Difference between revisions of "Cornish-Fisher expansion"
(Importing text file) |
m (fix tex) |
||
(2 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | c0265001.png | ||
+ | $#A+1 = 42 n = 0 | ||
+ | $#C+1 = 42 : ~/encyclopedia/old_files/data/C026/C.0206500 Cornish\ANDFisher expansion | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | An asymptotic expansion of the quantiles of a distribution (close to the normal standard one) in terms of the corresponding quantiles of the standard normal distribution, in powers of a small parameter. It was studied by E.A. Cornish and R.A. Fisher [[#References|[1]]]. If $ F ( x, t) $ | |
+ | is a distribution function depending on $ t $ | ||
+ | as a parameter, if $ \Phi ( x) $ | ||
+ | is the normal distribution function with parameters $ ( 0, 1) $, | ||
+ | and if $ F ( x, t) \rightarrow \Phi ( x) $ | ||
+ | as $ t \rightarrow 0 $, | ||
+ | then, subject to certain assumptions on $ F ( x, t) $, | ||
+ | the Cornish–Fisher expansion of the function $ x = F ^ {-1} [ \Phi ( z), t] $ | ||
+ | (where $ F ^ {-1} $ | ||
+ | is the function inverse to $ F $) | ||
+ | has the form | ||
− | + | $$ \tag{1 } | |
+ | x = z + \sum _ {i = 1 } ^ { m - 1 } | ||
+ | S _ {i} ( z) t ^ {i} + O ( t ^ {m} ), | ||
+ | $$ | ||
− | where the | + | where the $ S _ {i} ( z) $ |
+ | are certain polynomials in $ z $. | ||
+ | Similarly, one defines the Cornish–Fisher expansion of the function $ z = \Phi ^ {-1} [ F ( x, t)] $( | ||
+ | $ \Phi ^ {-1} $ | ||
+ | being the function inverse to $ \Phi $) | ||
+ | in powers of $ x $: | ||
− | + | $$ \tag{2 } | |
+ | z = x + \sum _ {i = 1 } ^ { m - 1 } | ||
+ | Q _ {i} ( x) t ^ {i} + O ( t ^ {m} ), | ||
+ | $$ | ||
− | + | where the $ Q _ {i} ( x) $ | |
+ | are certain polynomials in $ x $. | ||
+ | Formula (2) is obtained by expanding $ \Phi ^ {-1} $ | ||
+ | in a Taylor series about the point $ \Phi ( x) $ | ||
+ | and using the Edgeworth expansion. Formula (1) is the inversion of (2). | ||
− | + | If $ X $ | |
+ | is a random variable with distribution function $ F ( x, t) $, | ||
+ | then the variable $ Z = Z ( X) = \Phi ^ {-1} [ F ( X , t) ] $ | ||
+ | is normally distributed with parameters $ ( 0, 1) $, | ||
+ | and, as follows from (2), $ \Phi ( x) $ | ||
+ | approximates the distribution function of the variable | ||
− | + | $$ | |
+ | \overline{Z}\; = \ | ||
+ | X + \sum _ {i = 1 } ^ { m - 1 } | ||
+ | Q _ {i} ( X) t ^ {i} | ||
+ | $$ | ||
− | + | as $ t \rightarrow 0 $ | |
+ | better than it approximates $ F ( x, t) $. | ||
+ | If $ X $ | ||
+ | has zero expectation and unit variance, then the first terms of the expansion (1) have the form | ||
− | + | $$ | |
+ | x = z + | ||
+ | [ \gamma _ {1} h _ {1} ( z)] + | ||
+ | [ \gamma _ {2} h _ {2} ( z) + | ||
+ | \gamma _ {1} ^ {2} h _ {3} ( z)] + \dots . | ||
+ | $$ | ||
+ | |||
+ | Here $ \gamma _ {1} = {\kappa _ {3} / \kappa _ {2} } ^ {3/2} $, | ||
+ | $ \gamma _ {2} = \kappa _ {4} / \kappa _ {2} ^ {2} $, | ||
+ | with $ \kappa _ {r} $ | ||
+ | the $ r $- | ||
+ | th cumulant of $ X $, | ||
+ | $ h _ {1} ( z) = H _ {2} ( z)/6 $, | ||
+ | $ h _ {2} ( z) = H _ {3} ( z) / 24 $, | ||
+ | $ h _ {3} ( z) = - [ 2H _ {3} ( z) + H _ {1} ( z)]/36 $, | ||
+ | and with $ H _ {r} ( z) $ | ||
+ | the Hermite polynomials, defined by the relation | ||
+ | |||
+ | $$ | ||
+ | \phi ( z) H _ {r} ( z) = \ | ||
+ | (- 1) ^ {r} | ||
+ | |||
+ | \frac{d ^ {r} \phi ( z) }{dz ^ {r} } | ||
+ | \ \ | ||
+ | ( \phi ( z) = | ||
+ | \Phi ^ \prime ( z)). | ||
+ | $$ | ||
Concerning expansions for random variables obeying limit laws from the family of Pearson distributions see [[#References|[3]]]. See also [[Random variables, transformations of|Random variables, transformations of]]. | Concerning expansions for random variables obeying limit laws from the family of Pearson distributions see [[#References|[3]]]. See also [[Random variables, transformations of|Random variables, transformations of]]. | ||
Line 25: | Line 96: | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> E.A. Cornish, R.A. Fisher, "Moments and cumulants in the specification of distributions" ''Rev. Inst. Internat. Statist.'' , '''5''' (1937) pp. 307–320</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> M.G. Kendall, A. Stuart, "The advanced theory of statistics. Distribution theory" , '''3. Design and analysis''' , Griffin (1969)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> L.N. Bol'shev, "Asymptotically Pearson transformations" ''Theor. Probab. Appl.'' , '''8''' (1963) pp. 121–146 ''Teor. Veroyatnost. i Primenen.'' , '''8''' : 2 (1963) pp. 129–155</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> E.A. Cornish, R.A. Fisher, "Moments and cumulants in the specification of distributions" ''Rev. Inst. Internat. Statist.'' , '''5''' (1937) pp. 307–320</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> M.G. Kendall, A. Stuart, "The advanced theory of statistics. Distribution theory" , '''3. Design and analysis''' , Griffin (1969)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> L.N. Bol'shev, "Asymptotically Pearson transformations" ''Theor. Probab. Appl.'' , '''8''' (1963) pp. 121–146 ''Teor. Veroyatnost. i Primenen.'' , '''8''' : 2 (1963) pp. 129–155</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== |
Latest revision as of 16:41, 15 January 2021
An asymptotic expansion of the quantiles of a distribution (close to the normal standard one) in terms of the corresponding quantiles of the standard normal distribution, in powers of a small parameter. It was studied by E.A. Cornish and R.A. Fisher [1]. If $ F ( x, t) $
is a distribution function depending on $ t $
as a parameter, if $ \Phi ( x) $
is the normal distribution function with parameters $ ( 0, 1) $,
and if $ F ( x, t) \rightarrow \Phi ( x) $
as $ t \rightarrow 0 $,
then, subject to certain assumptions on $ F ( x, t) $,
the Cornish–Fisher expansion of the function $ x = F ^ {-1} [ \Phi ( z), t] $
(where $ F ^ {-1} $
is the function inverse to $ F $)
has the form
$$ \tag{1 } x = z + \sum _ {i = 1 } ^ { m - 1 } S _ {i} ( z) t ^ {i} + O ( t ^ {m} ), $$
where the $ S _ {i} ( z) $ are certain polynomials in $ z $. Similarly, one defines the Cornish–Fisher expansion of the function $ z = \Phi ^ {-1} [ F ( x, t)] $( $ \Phi ^ {-1} $ being the function inverse to $ \Phi $) in powers of $ x $:
$$ \tag{2 } z = x + \sum _ {i = 1 } ^ { m - 1 } Q _ {i} ( x) t ^ {i} + O ( t ^ {m} ), $$
where the $ Q _ {i} ( x) $ are certain polynomials in $ x $. Formula (2) is obtained by expanding $ \Phi ^ {-1} $ in a Taylor series about the point $ \Phi ( x) $ and using the Edgeworth expansion. Formula (1) is the inversion of (2).
If $ X $ is a random variable with distribution function $ F ( x, t) $, then the variable $ Z = Z ( X) = \Phi ^ {-1} [ F ( X , t) ] $ is normally distributed with parameters $ ( 0, 1) $, and, as follows from (2), $ \Phi ( x) $ approximates the distribution function of the variable
$$ \overline{Z}\; = \ X + \sum _ {i = 1 } ^ { m - 1 } Q _ {i} ( X) t ^ {i} $$
as $ t \rightarrow 0 $ better than it approximates $ F ( x, t) $. If $ X $ has zero expectation and unit variance, then the first terms of the expansion (1) have the form
$$ x = z + [ \gamma _ {1} h _ {1} ( z)] + [ \gamma _ {2} h _ {2} ( z) + \gamma _ {1} ^ {2} h _ {3} ( z)] + \dots . $$
Here $ \gamma _ {1} = {\kappa _ {3} / \kappa _ {2} } ^ {3/2} $, $ \gamma _ {2} = \kappa _ {4} / \kappa _ {2} ^ {2} $, with $ \kappa _ {r} $ the $ r $- th cumulant of $ X $, $ h _ {1} ( z) = H _ {2} ( z)/6 $, $ h _ {2} ( z) = H _ {3} ( z) / 24 $, $ h _ {3} ( z) = - [ 2H _ {3} ( z) + H _ {1} ( z)]/36 $, and with $ H _ {r} ( z) $ the Hermite polynomials, defined by the relation
$$ \phi ( z) H _ {r} ( z) = \ (- 1) ^ {r} \frac{d ^ {r} \phi ( z) }{dz ^ {r} } \ \ ( \phi ( z) = \Phi ^ \prime ( z)). $$
Concerning expansions for random variables obeying limit laws from the family of Pearson distributions see [3]. See also Random variables, transformations of.
References
[1] | E.A. Cornish, R.A. Fisher, "Moments and cumulants in the specification of distributions" Rev. Inst. Internat. Statist. , 5 (1937) pp. 307–320 |
[2] | M.G. Kendall, A. Stuart, "The advanced theory of statistics. Distribution theory" , 3. Design and analysis , Griffin (1969) |
[3] | L.N. Bol'shev, "Asymptotically Pearson transformations" Theor. Probab. Appl. , 8 (1963) pp. 121–146 Teor. Veroyatnost. i Primenen. , 8 : 2 (1963) pp. 129–155 |
Comments
For the methods of using an Edgeworth expansion to obtain (2) (see also Edgeworth series), see also [a1].
References
[a1] | P.J. Bickel, "Edgeworth expansions in non parametric statistics" Ann. Statist. , 2 (1974) pp. 1–20 |
[a2] | N.L. Johnson, S. Kotz, "Distributions in statistics" , 1 , Houghton Mifflin (1970) |
Cornish-Fisher expansion. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Cornish-Fisher_expansion&oldid=14424