|
|
(One intermediate revision by one other user not shown) |
Line 1: |
Line 1: |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084660/s0846601.png" /> be a subgroup of a group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084660/s0846602.png" />. A series of subgroups between <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084660/s0846603.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084660/s0846604.png" />, or, more briefly, a series between <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084660/s0846605.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084660/s0846606.png" />, is a set of subgroups of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084660/s0846607.png" />,
| + | <!-- |
| + | s0846601.png |
| + | $#A+1 = 33 n = 0 |
| + | $#C+1 = 33 : ~/encyclopedia/old_files/data/S084/S.0804660 Serial subgroup |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084660/s0846608.png" /></td> </tr></table>
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084660/s0846609.png" /> is a linearly ordered set, such that
| + | Let $ H $ |
| + | be a subgroup of a group $ G $. |
| + | A series of subgroups between $ H $ |
| + | and $ G $, |
| + | or, more briefly, a series between $ H $ |
| + | and $ G $, |
| + | is a set of subgroups of $ G $, |
| | | |
− | i) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084660/s08466010.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084660/s08466011.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084660/s08466012.png" />;
| + | $$ |
| + | S = \{ {A _ \sigma , B _ \sigma } : {\sigma \in \Sigma |
| + | } \} |
| + | , |
| + | $$ |
| | | |
− | ii) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084660/s08466013.png" />;
| + | where $ \Sigma $ |
| + | is a linearly ordered set, such that |
| | | |
− | iii) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084660/s08466014.png" /> is a normal subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084660/s08466015.png" />;
| + | i) $ H \subset A _ \sigma $, |
| + | $ H \subset B _ \sigma $ |
| + | for all $ \sigma \in \Sigma $; |
| | | |
− | iv) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084660/s08466016.png" /> is a subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084660/s08466017.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084660/s08466018.png" />.
| + | ii) $ G \setminus H = \cup _ \sigma ( B _ \sigma \setminus A _ \sigma ) $; |
| | | |
− | It follows that for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084660/s08466019.png" />,
| + | iii) $ A _ \sigma $ |
| + | is a normal subgroup of $ B _ \sigma $; |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084660/s08466020.png" /></td> </tr></table> | + | iv) $ B _ \tau $ |
| + | is a subgroup of $ A _ \sigma $ |
| + | if $ \tau < \sigma $. |
| + | |
| + | It follows that for all $ \tau < \sigma $, |
| + | |
| + | $$ |
| + | A _ \tau \lhd B _ \tau \subset A _ \sigma \lhd B _ \sigma |
| + | $$ |
| | | |
| and | | and |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084660/s08466021.png" /></td> </tr></table>
| + | $$ |
| + | B _ \sigma = \cap _ {\tau > \sigma } A _ \tau \,,\ A _ \sigma = \cup _ {\tau < \sigma } B _ \tau , |
| + | $$ |
| | | |
− | and for a finite series, indexed by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084660/s08466022.png" />, hence | + | and for a finite series, indexed by $ \{ 0,\ldots, n \} $, |
| + | hence |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084660/s08466023.png" /></td> </tr></table>
| + | $$ |
| + | B _ {i} = A _ {i+1} ,\ i = 0, \ldots, n- 1. |
| + | $$ |
| | | |
− | A subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084660/s08466024.png" /> is called serial if there is a series of subgroups between <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084660/s08466025.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084660/s08466026.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084660/s08466027.png" /> is finite, a subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084660/s08466028.png" /> is serial if and only if it is a [[Subnormal subgroup|subnormal subgroup]]. A subgroup <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084660/s08466029.png" /> is called an ascendant subgroup in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084660/s08466030.png" /> if there is an ascending series of subgroups between <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084660/s08466031.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084660/s08466032.png" />, that is, a series whose index set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s084/s084660/s08466033.png" /> is well-ordered. | + | A subgroup $ H $ |
| + | is called serial if there is a series of subgroups between $ H $ |
| + | and $ G $. |
| + | If $ G $ |
| + | is finite, a subgroup $ H $ |
| + | is serial if and only if it is a [[Subnormal subgroup|subnormal subgroup]]. A subgroup $ H $ |
| + | is called an ascendant subgroup in $ G $ |
| + | if there is an ascending series of subgroups between $ H $ |
| + | and $ G $, |
| + | that is, a series whose index set $ \Sigma $ |
| + | is well-ordered. |
| | | |
| ====References==== | | ====References==== |
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> D.J.S. Robinson, "Finiteness condition and generalized soluble groups" , '''1''' , Springer (1972) pp. Chapt. 1</TD></TR></table> | + | <table> |
| + | <TR><TD valign="top">[a1]</TD> <TD valign="top"> D.J.S. Robinson, "Finiteness conditions and generalized soluble groups. Part 1". Ergebnisse der Mathematik und ihrer Grenzgebiete. Band '''62'''. Springer (1972) {{ZBL|0243.20032}} Chap. 1</TD></TR> |
| + | </table> |
Let $ H $
be a subgroup of a group $ G $.
A series of subgroups between $ H $
and $ G $,
or, more briefly, a series between $ H $
and $ G $,
is a set of subgroups of $ G $,
$$
S = \{ {A _ \sigma , B _ \sigma } : {\sigma \in \Sigma
} \}
,
$$
where $ \Sigma $
is a linearly ordered set, such that
i) $ H \subset A _ \sigma $,
$ H \subset B _ \sigma $
for all $ \sigma \in \Sigma $;
ii) $ G \setminus H = \cup _ \sigma ( B _ \sigma \setminus A _ \sigma ) $;
iii) $ A _ \sigma $
is a normal subgroup of $ B _ \sigma $;
iv) $ B _ \tau $
is a subgroup of $ A _ \sigma $
if $ \tau < \sigma $.
It follows that for all $ \tau < \sigma $,
$$
A _ \tau \lhd B _ \tau \subset A _ \sigma \lhd B _ \sigma
$$
and
$$
B _ \sigma = \cap _ {\tau > \sigma } A _ \tau \,,\ A _ \sigma = \cup _ {\tau < \sigma } B _ \tau ,
$$
and for a finite series, indexed by $ \{ 0,\ldots, n \} $,
hence
$$
B _ {i} = A _ {i+1} ,\ i = 0, \ldots, n- 1.
$$
A subgroup $ H $
is called serial if there is a series of subgroups between $ H $
and $ G $.
If $ G $
is finite, a subgroup $ H $
is serial if and only if it is a subnormal subgroup. A subgroup $ H $
is called an ascendant subgroup in $ G $
if there is an ascending series of subgroups between $ H $
and $ G $,
that is, a series whose index set $ \Sigma $
is well-ordered.
References
[a1] | D.J.S. Robinson, "Finiteness conditions and generalized soluble groups. Part 1". Ergebnisse der Mathematik und ihrer Grenzgebiete. Band 62. Springer (1972) Zbl 0243.20032 Chap. 1 |