Namespaces
Variants
Actions

Difference between revisions of "Probability measure"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
m (fix tex)
 
Line 17: Line 17:
 
A real non-negative function  $  {\mathsf P} $
 
A real non-negative function  $  {\mathsf P} $
 
on a class  $  {\mathcal A} $
 
on a class  $  {\mathcal A} $
of subsets (events) of a non-empty set  $  \Omega $(
+
of subsets (events) of a non-empty set  $  \Omega $
the space of elementary events) forming a  $  \sigma $-
+
(the space of elementary events) forming a  $  \sigma $-
 
field (i.e. a set closed with respect to countable set-theoretic operations) such that
 
field (i.e. a set closed with respect to countable set-theoretic operations) such that
  
 
$$  
 
$$  
 
{\mathsf P} ( \Omega )  =  1 \  \textrm{ and } \ \  
 
{\mathsf P} ( \Omega )  =  1 \  \textrm{ and } \ \  
{\mathsf P} \left ( \cup _ { i= } 1 ^  \infty  A _ {i} \right )  = \  
+
{\mathsf P} \left ( \cup _ { i=1} ^  \infty  A _ {i} \right )  = \  
\sum _ { i= } 1 ^  \infty  {\mathsf P} ( A _ {i} )
+
\sum _ { i=1 } ^  \infty  {\mathsf P} ( A _ {i} )
 
$$
 
$$
  
Line 37: Line 37:
 
$  {\mathcal A} $
 
$  {\mathcal A} $
 
is the class of all subsets of  $  \Omega $;  
 
is the class of all subsets of  $  \Omega $;  
$  {\mathsf P} ( \{ 1 \} ) = {\mathsf P} ( \{ 2 \} ) = 1 / 2 $(
+
$  {\mathsf P} ( \{ 1 \} ) = {\mathsf P} ( \{ 2 \} ) = 1 / 2 $
this probability measure corresponds to a random experiment consisting in throwing a symmetrical coin; if heads correspond to 1 while tails correspond to 2, the probability of throwing heads (tails) is 1/2);
+
(this probability measure corresponds to a random experiment consisting in throwing a symmetrical coin; if heads correspond to 1 while tails correspond to 2, the probability of throwing heads (tails) is 1/2);
  
 
2)  $  \Omega = \{ 0, 1 , .  .  . \} $;  
 
2)  $  \Omega = \{ 0, 1 , .  .  . \} $;  
Line 51: Line 51:
 
$$
 
$$
  
where  $  \lambda > 0 $(
+
where  $  \lambda > 0 $
the [[Poisson distribution|Poisson distribution]]);
+
(the [[Poisson distribution|Poisson distribution]]);
  
 
3)  $  \Omega = \mathbf R  ^ {1} $;  
 
3)  $  \Omega = \mathbf R  ^ {1} $;  
Line 64: Line 64:
 
  \int\limits _ { A } e ^ {- x  ^ {2} /2 }  dx
 
  \int\limits _ { A } e ^ {- x  ^ {2} /2 }  dx
 
$$
 
$$
 
 
(the [[Normal distribution|normal distribution]]);
 
(the [[Normal distribution|normal distribution]]);
  
Line 81: Line 80:
 
$$  
 
$$  
 
= \  
 
= \  
( 2 \pi )  ^ {-} n/2 \prod _ { i= } 1 ^ { n }  ( t _ {i} - t _ {i-} 1 )  ^ {-} 1/2 \times
+
( 2 \pi )  ^ {- n/2} \prod _ { i=1 } ^ { n }  ( t _ {i} - t _ {i-1} )  ^ {- 1/2} \times
 
$$
 
$$
  
Line 90: Line 89:
 
\frac{1}{2}
 
\frac{1}{2}
  
\sum _ { i= } 1 ^ { n }   
+
\sum _ { i=1 } ^ { n }   
\frac{( x _ {i} - x _ {i-} 1 )  ^ {2} }{t _ {i} - t _ {i-} 1 }
+
\frac{( x _ {i} - x _ {i-1} )  ^ {2} }{t _ {i} - t _ {i-1} }
 
  \right \}  dx _ {1} \dots d x _ {n} ,
 
  \right \}  dx _ {1} \dots d x _ {n} ,
 
$$
 
$$
  
 
where  $  n $
 
where  $  n $
is an arbitrary natural number and  $  0 = t _ {0} < t _ {1} < \dots < t _ {n} \leq  1 $(
+
is an arbitrary natural number and  $  0 = t _ {0} < t _ {1} < \dots < t _ {n} \leq  1 $
the [[Wiener measure|Wiener measure]]).
+
(the [[Wiener measure|Wiener measure]]).
  
 
====References====
 
====References====

Latest revision as of 19:48, 8 January 2021


probability distribution, probability

2020 Mathematics Subject Classification: Primary: 60-01 [MSN][ZBL]

A real non-negative function $ {\mathsf P} $ on a class $ {\mathcal A} $ of subsets (events) of a non-empty set $ \Omega $ (the space of elementary events) forming a $ \sigma $- field (i.e. a set closed with respect to countable set-theoretic operations) such that

$$ {\mathsf P} ( \Omega ) = 1 \ \textrm{ and } \ \ {\mathsf P} \left ( \cup _ { i=1} ^ \infty A _ {i} \right ) = \ \sum _ { i=1 } ^ \infty {\mathsf P} ( A _ {i} ) $$

if $ A _ {i} \cap A _ {j} = \emptyset $ for $ i \neq j $( $ \sigma $- additivity).

Examples of probability measures.

1) $ \Omega = \{ 1, 2 \} $; $ {\mathcal A} $ is the class of all subsets of $ \Omega $; $ {\mathsf P} ( \{ 1 \} ) = {\mathsf P} ( \{ 2 \} ) = 1 / 2 $ (this probability measure corresponds to a random experiment consisting in throwing a symmetrical coin; if heads correspond to 1 while tails correspond to 2, the probability of throwing heads (tails) is 1/2);

2) $ \Omega = \{ 0, 1 , . . . \} $; $ {\mathcal A} $ is the class of all subsets of $ \Omega $;

$$ {\mathsf P} ( \{ k \} ) = \ \frac{\lambda ^ {k} }{k!} e ^ {- \lambda } , $$

where $ \lambda > 0 $ (the Poisson distribution);

3) $ \Omega = \mathbf R ^ {1} $; $ {\mathcal A} $ is the class of Borel subsets of $ \mathbf R ^ {1} $;

$$ {\mathsf P} ( A) = \ \frac{1}{\sqrt {2 \pi } } \int\limits _ { A } e ^ {- x ^ {2} /2 } dx $$ (the normal distribution);

4) $ \Omega = C _ {0} [ 0, 1] $ is the space of continuous real functions $ x( t) $ on $ [ 0, 1] $ that vanish at the point zero; $ {\mathcal A} $ is the class of Borel subsets with respect to the topology of uniform convergence; $ {\mathsf P} $ is the measure which is uniquely defined by the formula

$$ {\mathsf P} ( x : a _ {i} < x ( t _ {i} ) < b _ {i} ,\ i = 1 \dots n) = $$

$$ = \ ( 2 \pi ) ^ {- n/2} \prod _ { i=1 } ^ { n } ( t _ {i} - t _ {i-1} ) ^ {- 1/2} \times $$

$$ \times \int\limits _ { a _ {1} } ^ { {b _ 1 } } \dots \int\limits _ {a _ {n} } ^ { {b _ n} } \mathop{\rm exp} \left \{ - \frac{1}{2} \sum _ { i=1 } ^ { n } \frac{( x _ {i} - x _ {i-1} ) ^ {2} }{t _ {i} - t _ {i-1} } \right \} dx _ {1} \dots d x _ {n} , $$

where $ n $ is an arbitrary natural number and $ 0 = t _ {0} < t _ {1} < \dots < t _ {n} \leq 1 $ (the Wiener measure).

References

[K] A.N. Kolmogorov, "Foundations of the theory of probability" , Chelsea, reprint (1950) (Translated from Russian) MR0032961
[G] B.V. Gnedenko, "The theory of probability", Chelsea, reprint (1962) (Translated from Russian)

Comments

References

[B] P. Billingsley, "Probability and measure" , Wiley (1979) MR0534323 Zbl 0411.60001
How to Cite This Entry:
Probability measure. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Probability_measure&oldid=48300
This article was adapted from an original article by V.V. Sazonov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article