Difference between revisions of "Dirichlet distribution"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
m (fix tex) |
||
Line 14: | Line 14: | ||
$$ | $$ | ||
− | S _ {k} = \{ {( x _ {1} \dots x _ {k} ) } : {x _ {1} \geq 0 \ | + | S _ {k} = \{ {( x _ {1} \dots x _ {k} ) } : {x _ {1} \geq 0, \ldots, x _ {k} \geq 0 , x _ {1} + \dots + x _ {k} = 1 } \} |
, | , | ||
$$ | $$ | ||
Line 25: | Line 25: | ||
\begin{array}{ll} | \begin{array}{ll} | ||
− | C _ {k} \prod _ { i= } | + | C _ {k} \prod _ { i=1 } ^ { k } x _ {i} ^ {\nu _ {i} - 1 } & \textrm{ if } ( x _ {1}, \ldots, x _ {k} ) \in S _ {k} , \\ |
− | 0 & \textrm{ if } ( x _ {1} \ | + | 0 & \textrm{ if } ( x _ {1}, \ldots, x _ {k} ) \notin S _ {k} , \\ |
\end{array} | \end{array} | ||
Line 35: | Line 35: | ||
$$ | $$ | ||
− | C _ {k} = \Gamma ( \nu _ {1} + \dots + \nu _ {k} ) \prod _ { i= } | + | C _ {k} = \Gamma ( \nu _ {1} + \dots + \nu _ {k} ) \prod _ { i=1 } ^ { k } |
\frac{1}{\Gamma ( \nu _ {i} ) } | \frac{1}{\Gamma ( \nu _ {i} ) } | ||
Line 43: | Line 43: | ||
where $ \Gamma ( \cdot ) $ | where $ \Gamma ( \cdot ) $ | ||
is the gamma-function. If $ k= 2 $, | is the gamma-function. If $ k= 2 $, | ||
− | one has a special case of the Dirichlet distribution: the [[Beta-distribution|beta-distribution]]. The Dirichlet distribution plays an important role in the theory of order statistics. For instance, if $ X _ {1} \ | + | one has a special case of the Dirichlet distribution: the [[Beta-distribution|beta-distribution]]. The Dirichlet distribution plays an important role in the theory of order statistics. For instance, if $ X _ {1}, \ldots, X _ {n} $ |
are independent random variables that are uniformly distributed over the interval $ [ 0, 1] $ | are independent random variables that are uniformly distributed over the interval $ [ 0, 1] $ | ||
− | and $ X ^ {( | + | and $ X ^ {( 1)} \leq \dots \leq X ^ {( n)} $ |
are the corresponding order statistics (cf. [[Order statistic|Order statistic]]), the joint distribution of the $ k $ | are the corresponding order statistics (cf. [[Order statistic|Order statistic]]), the joint distribution of the $ k $ | ||
differences | differences | ||
$$ | $$ | ||
− | X ^ {( m _ {1} ) } , X ^ {( m _ {2} ) } - X ^ {( m _ {1} ) } | + | X ^ {( m _ {1} ) } , X ^ {( m _ {2} ) } - X ^ {( m _ {1} ) }, |
− | \ | + | \ldots, X ^ {( m _ {k-1} ) } - X ^ {( m _ {k-2} ) } , 1 - X ^ |
{( m _ {k} ) } | {( m _ {k} ) } | ||
$$ | $$ | ||
− | (it is assumed that $ 1 \leq m _ {1} < m _ {2} < \dots < m _ {k-} | + | (it is assumed that $ 1 \leq m _ {1} < m _ {2} < \dots < m _ {k-1} $) |
has the Dirichlet distribution with $ \nu _ {1} = m _ {1} $, | has the Dirichlet distribution with $ \nu _ {1} = m _ {1} $, | ||
− | $ \nu _ {2} = m _ {2} - m _ {1} \ | + | $ \nu _ {2} = m _ {2} - m _ {1}, \ldots, \nu _ {k-1} = m _ {k-1} - m _ {k-2} $, |
− | $ \nu _ {k} = n - m _ {k-} | + | $ \nu _ {k} = n - m _ {k-1} $. |
====References==== | ====References==== |
Revision as of 09:37, 8 January 2021
A probability distribution on the simplex
$$ S _ {k} = \{ {( x _ {1} \dots x _ {k} ) } : {x _ {1} \geq 0, \ldots, x _ {k} \geq 0 , x _ {1} + \dots + x _ {k} = 1 } \} , $$
where $ k= 2, 3 \dots $ determined by the probability density
$$ p ( x _ {1} \dots x _ {k} ) = \left \{ \begin{array}{ll} C _ {k} \prod _ { i=1 } ^ { k } x _ {i} ^ {\nu _ {i} - 1 } & \textrm{ if } ( x _ {1}, \ldots, x _ {k} ) \in S _ {k} , \\ 0 & \textrm{ if } ( x _ {1}, \ldots, x _ {k} ) \notin S _ {k} , \\ \end{array} \right .$$
where $ \nu _ {1} > 0 \dots \nu _ {k} > 0 $ and
$$ C _ {k} = \Gamma ( \nu _ {1} + \dots + \nu _ {k} ) \prod _ { i=1 } ^ { k } \frac{1}{\Gamma ( \nu _ {i} ) } , $$
where $ \Gamma ( \cdot ) $ is the gamma-function. If $ k= 2 $, one has a special case of the Dirichlet distribution: the beta-distribution. The Dirichlet distribution plays an important role in the theory of order statistics. For instance, if $ X _ {1}, \ldots, X _ {n} $ are independent random variables that are uniformly distributed over the interval $ [ 0, 1] $ and $ X ^ {( 1)} \leq \dots \leq X ^ {( n)} $ are the corresponding order statistics (cf. Order statistic), the joint distribution of the $ k $ differences
$$ X ^ {( m _ {1} ) } , X ^ {( m _ {2} ) } - X ^ {( m _ {1} ) }, \ldots, X ^ {( m _ {k-1} ) } - X ^ {( m _ {k-2} ) } , 1 - X ^ {( m _ {k} ) } $$
(it is assumed that $ 1 \leq m _ {1} < m _ {2} < \dots < m _ {k-1} $) has the Dirichlet distribution with $ \nu _ {1} = m _ {1} $, $ \nu _ {2} = m _ {2} - m _ {1}, \ldots, \nu _ {k-1} = m _ {k-1} - m _ {k-2} $, $ \nu _ {k} = n - m _ {k-1} $.
References
[1] | S.S. Wilks, "Mathematical statistics" , Wiley (1962) |
Comments
References
[a1] | T.S. Ferguson, "A Bayesian analysis of some nonparametric problems" Ann. Stat. , 1 (1973) pp. 209–230 |
Dirichlet distribution. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Dirichlet_distribution&oldid=46717