Difference between revisions of "Favard inequality"
From Encyclopedia of Mathematics
(Importing text file) |
m (fix tex) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | f0382701.png | ||
+ | $#A+1 = 7 n = 0 | ||
+ | $#C+1 = 7 : ~/encyclopedia/old_files/data/F038/F.0308270 Favard inequality | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
The inequality | The inequality | ||
− | + | $$ \tag{* } | |
+ | \| x \| _ {C [ 0, 2 \pi ] } \leq \ | ||
+ | M K _ {r} n ^ {-r} ,\ \ | ||
+ | r = 1, 2 \dots | ||
+ | $$ | ||
where | where | ||
− | + | $$ | |
+ | K _ {r} = \ | ||
+ | { | ||
+ | \frac{4} \pi | ||
+ | } | ||
+ | \sum _ {k = 0 } ^ \infty | ||
+ | (- 1) ^ {k ( r + 1) } | ||
+ | ( 2k + 1) ^ {- r - 1 } , | ||
+ | $$ | ||
− | and the function | + | and the function $ x ( t) \in W ^ {r} MC $ |
+ | is orthogonal to every trigonometric polynomial of order not exceeding $ n - 1 $. | ||
+ | For $ r = 1 $ | ||
+ | inequality (*) was proved by H. Bohr (1935), so it is also called the Bohr inequality and the [[Bohr–Favard inequality|Bohr–Favard inequality]]. For an arbitrary positive integer $ r $ | ||
+ | inequality (*) was proved by J. Favard [[#References|[1]]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> J. Favard, "Sur l'approximation des fonctions périodiques par des polynomes trigonométriques" ''C.R. Acad. Sci. Paris'' , '''203''' (1936) pp. 1122–1124</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> V.M. Tikhomirov, "Some problems in approximation theory" , Moscow (1976) (In Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> J. Favard, "Sur l'approximation des fonctions périodiques par des polynomes trigonométriques" ''C.R. Acad. Sci. Paris'' , '''203''' (1936) pp. 1122–1124</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> V.M. Tikhomirov, "Some problems in approximation theory" , Moscow (1976) (In Russian)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | For a definition of the space | + | For a definition of the space $ W ^ {r} MC $ |
+ | cf. [[Favard problem|Favard problem]]. |
Latest revision as of 19:36, 2 January 2021
The inequality
$$ \tag{* } \| x \| _ {C [ 0, 2 \pi ] } \leq \ M K _ {r} n ^ {-r} ,\ \ r = 1, 2 \dots $$
where
$$ K _ {r} = \ { \frac{4} \pi } \sum _ {k = 0 } ^ \infty (- 1) ^ {k ( r + 1) } ( 2k + 1) ^ {- r - 1 } , $$
and the function $ x ( t) \in W ^ {r} MC $ is orthogonal to every trigonometric polynomial of order not exceeding $ n - 1 $. For $ r = 1 $ inequality (*) was proved by H. Bohr (1935), so it is also called the Bohr inequality and the Bohr–Favard inequality. For an arbitrary positive integer $ r $ inequality (*) was proved by J. Favard [1].
References
[1] | J. Favard, "Sur l'approximation des fonctions périodiques par des polynomes trigonométriques" C.R. Acad. Sci. Paris , 203 (1936) pp. 1122–1124 |
[2] | V.M. Tikhomirov, "Some problems in approximation theory" , Moscow (1976) (In Russian) |
Comments
For a definition of the space $ W ^ {r} MC $ cf. Favard problem.
How to Cite This Entry:
Favard inequality. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Favard_inequality&oldid=15703
Favard inequality. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Favard_inequality&oldid=15703
This article was adapted from an original article by Yu.N. Subbotin (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article