Difference between revisions of "Gegenbauer transform"
(Importing text file) |
m (fix tex) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | g0436201.png | ||
+ | $#A+1 = 9 n = 0 | ||
+ | $#C+1 = 9 : ~/encyclopedia/old_files/data/G043/G.0403620 Gegenbauer transform | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | The [[Integral transform|integral transform]] $ T \{ F( t) \} $ | |
+ | of a function $ F( t) $, | ||
− | + | $$ | |
+ | T \{ F ( t) \} = \ | ||
+ | \int\limits _ { -1 } ^ { +1 } ( 1 - t ^ {2} ) ^ {\rho - 1/2 } C _ {n} ^ \rho ( t) F ( t) dt = f _ {n} ^ { \rho } , | ||
+ | $$ | ||
− | + | $$ | |
+ | \rho > - \frac{1}{2} ,\ n = 0, 1 , \ldots\;. | ||
+ | $$ | ||
+ | |||
+ | Here $ C _ {n} ^ \rho $ | ||
+ | are the [[Gegenbauer polynomials|Gegenbauer polynomials]]. If a function can be expanded into a generalized Fourier series by Gegenbauer polynomials, the following inversion formula is valid: | ||
+ | |||
+ | $$ | ||
+ | F ( t) = \sum _ {n = 0 } ^ \infty | ||
+ | |||
+ | \frac{n! ( n + \rho ) \Gamma ^ {2} ( \rho ) 2 ^ {2 \rho - 1 } }{\pi \Gamma ( n + 2 \rho ) } | ||
+ | |||
+ | C _ {n} ^ \rho ( t) f _ {n} ^ { \rho } ,\ \ | ||
+ | - 1 < t < 1. | ||
+ | $$ | ||
The Gegenbauer transform reduces the differentiation operation | The Gegenbauer transform reduces the differentiation operation | ||
− | + | $$ | |
+ | R [ F ( t)] = \ | ||
+ | ( 1 - t ^ {2} ) F ^ { \prime\prime } - ( 2 \rho - 1) tF ^ { \prime\prime } | ||
+ | $$ | ||
to the algebraic operation | to the algebraic operation | ||
− | + | $$ | |
+ | T \{ R [ F ( t)] \} = - n ( n + 2 \rho ) f _ {n} ^ { \rho } . | ||
+ | $$ | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> V.A. Ditkin, A.P. Prudnikov, "Operational calculus" ''Progress in Math.'' , '''1''' (1968) pp. 1–75 ''Itogi Nauk. Ser. Mat. Anal. 1966'' (1967) pp. 7–82</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> V.A. Ditkin, A.P. Prudnikov, "Operational calculus" ''Progress in Math.'' , '''1''' (1968) pp. 1–75 ''Itogi Nauk. Ser. Mat. Anal. 1966'' (1967) pp. 7–82</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | For any system of orthogonal polynomials one can formally consider a transform pair as above, cf. | + | For any system of orthogonal polynomials one can formally consider a transform pair as above, cf. (1) and |
− | + | (2) in [[Fourier series in orthogonal polynomials|Fourier series in orthogonal polynomials]]. The Gegenbauer transform (and, more generally, the [[Jacobi transform|Jacobi transform]]) has been considered for arguments $ n $ | |
− | and | + | which are arbitrarily complex. Then inversion formulas exist in the form of integrals and there is a relationship with sampling theory, cf. [[#References|[a1]]], [[#References|[a2]]]. |
− | |||
− | in [[Fourier series in orthogonal polynomials|Fourier series in orthogonal polynomials]]. The Gegenbauer transform (and, more generally, the [[Jacobi transform|Jacobi transform]]) has been considered for arguments | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> P.L. Butzer, R.L. Stens, M. Wehrens, "The continuous Legendre transform, its inverse transform, and applications," ''Internat. J. Math. Sci.'' , '''3''' (1980) pp. 47–67</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> T.H. Koornwinder, G.G. Walter, "The finite continuous Jacobi transform and its inverse" ''J. Approx. Theory'' (To appear)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> P.L. Butzer, R.L. Stens, M. Wehrens, "The continuous Legendre transform, its inverse transform, and applications," ''Internat. J. Math. Sci.'' , '''3''' (1980) pp. 47–67</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> T.H. Koornwinder, G.G. Walter, "The finite continuous Jacobi transform and its inverse" ''J. Approx. Theory'' (To appear)</TD></TR></table> |
Latest revision as of 18:27, 1 January 2021
The integral transform $ T \{ F( t) \} $
of a function $ F( t) $,
$$ T \{ F ( t) \} = \ \int\limits _ { -1 } ^ { +1 } ( 1 - t ^ {2} ) ^ {\rho - 1/2 } C _ {n} ^ \rho ( t) F ( t) dt = f _ {n} ^ { \rho } , $$
$$ \rho > - \frac{1}{2} ,\ n = 0, 1 , \ldots\;. $$
Here $ C _ {n} ^ \rho $ are the Gegenbauer polynomials. If a function can be expanded into a generalized Fourier series by Gegenbauer polynomials, the following inversion formula is valid:
$$ F ( t) = \sum _ {n = 0 } ^ \infty \frac{n! ( n + \rho ) \Gamma ^ {2} ( \rho ) 2 ^ {2 \rho - 1 } }{\pi \Gamma ( n + 2 \rho ) } C _ {n} ^ \rho ( t) f _ {n} ^ { \rho } ,\ \ - 1 < t < 1. $$
The Gegenbauer transform reduces the differentiation operation
$$ R [ F ( t)] = \ ( 1 - t ^ {2} ) F ^ { \prime\prime } - ( 2 \rho - 1) tF ^ { \prime\prime } $$
to the algebraic operation
$$ T \{ R [ F ( t)] \} = - n ( n + 2 \rho ) f _ {n} ^ { \rho } . $$
References
[1] | V.A. Ditkin, A.P. Prudnikov, "Operational calculus" Progress in Math. , 1 (1968) pp. 1–75 Itogi Nauk. Ser. Mat. Anal. 1966 (1967) pp. 7–82 |
Comments
For any system of orthogonal polynomials one can formally consider a transform pair as above, cf. (1) and (2) in Fourier series in orthogonal polynomials. The Gegenbauer transform (and, more generally, the Jacobi transform) has been considered for arguments $ n $ which are arbitrarily complex. Then inversion formulas exist in the form of integrals and there is a relationship with sampling theory, cf. [a1], [a2].
References
[a1] | P.L. Butzer, R.L. Stens, M. Wehrens, "The continuous Legendre transform, its inverse transform, and applications," Internat. J. Math. Sci. , 3 (1980) pp. 47–67 |
[a2] | T.H. Koornwinder, G.G. Walter, "The finite continuous Jacobi transform and its inverse" J. Approx. Theory (To appear) |
Gegenbauer transform. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Gegenbauer_transform&oldid=18275