Namespaces
Variants
Actions

Difference between revisions of "Asymptotically-unbiased test"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (tex encoded by computer)
(better)
 
Line 11: Line 11:
 
{{TEX|done}}
 
{{TEX|done}}
  
A concept indicating that the test is unbiased in the limit. For example, in the case of  $  n $
+
A concept indicating that a [[statistical test]] is unbiased in the limit. For example, in the case of  $  n $
 
independent samples from a one-dimensional distribution depending on a parameter  $  \theta \in \Omega $,  
 
independent samples from a one-dimensional distribution depending on a parameter  $  \theta \in \Omega $,  
 
let  $  H $
 
let  $  H $
Line 20: Line 20:
 
$$  
 
$$  
 
\theta  \in  \Omega _ {K} ,\  \Omega _ {H} \cup \Omega _ {K}  =  \Omega ,\ \  
 
\theta  \in  \Omega _ {K} ,\  \Omega _ {H} \cup \Omega _ {K}  =  \Omega ,\ \  
\Omega _ {H} \cup \Omega _ {K}  =  \emptyset .
+
\Omega _ {H} \cap \Omega _ {K}  =  \emptyset .
 
$$
 
$$
  
 
The critical set  $  R _ {n} $
 
The critical set  $  R _ {n} $
in the  $  n $-
+
in the  $  n $-dimensional Euclidean space,  $  n=1, 2 \dots $
dimensional Euclidean space,  $  n=1, 2 \dots $
 
 
is an asymptotically-unbiased test of the hypothesis  $  H $
 
is an asymptotically-unbiased test of the hypothesis  $  H $
 
with level  $  \alpha $
 
with level  $  \alpha $

Latest revision as of 11:31, 1 January 2021


A concept indicating that a statistical test is unbiased in the limit. For example, in the case of $ n $ independent samples from a one-dimensional distribution depending on a parameter $ \theta \in \Omega $, let $ H $ be the null hypothesis: $ \theta \in \Omega _ {H} $, and let $ K $ be the alternative:

$$ \theta \in \Omega _ {K} ,\ \Omega _ {H} \cup \Omega _ {K} = \Omega ,\ \ \Omega _ {H} \cap \Omega _ {K} = \emptyset . $$

The critical set $ R _ {n} $ in the $ n $-dimensional Euclidean space, $ n=1, 2 \dots $ is an asymptotically-unbiased test of the hypothesis $ H $ with level $ \alpha $ if

$$ \lim\limits _ {n \rightarrow \infty } {\mathsf P} ( R _ {n} \mid \theta ) \leq \alpha , \ \theta \in \Omega _ {H} , $$

$$ \alpha \leq \lim\limits _ {n \rightarrow \infty } {\mathsf P} ( R _ {n} \mid \theta ),\ \theta \in \Omega _ {K} . $$

The function

$$ \lim\limits _ {n \rightarrow \infty } {\mathsf P} ( R _ {n} \mid \theta ) $$

is called the asymptotic power function of the test $ R _ {n} $.

How to Cite This Entry:
Asymptotically-unbiased test. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Asymptotically-unbiased_test&oldid=45237
This article was adapted from an original article by O.V. Shalaevskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article