Difference between revisions of "Asymptotically-unbiased test"
(Importing text file) |
(better) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | a0138301.png | ||
+ | $#A+1 = 15 n = 0 | ||
+ | $#C+1 = 15 : ~/encyclopedia/old_files/data/A013/A.0103830 Asymptotically\AAhunbiased test | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A concept indicating that a [[statistical test]] is unbiased in the limit. For example, in the case of $ n $ | |
+ | independent samples from a one-dimensional distribution depending on a parameter $ \theta \in \Omega $, | ||
+ | let $ H $ | ||
+ | be the null hypothesis: $ \theta \in \Omega _ {H} $, | ||
+ | and let $ K $ | ||
+ | be the alternative: | ||
− | + | $$ | |
+ | \theta \in \Omega _ {K} ,\ \Omega _ {H} \cup \Omega _ {K} = \Omega ,\ \ | ||
+ | \Omega _ {H} \cap \Omega _ {K} = \emptyset . | ||
+ | $$ | ||
− | + | The critical set $ R _ {n} $ | |
+ | in the $ n $-dimensional Euclidean space, $ n=1, 2 \dots $ | ||
+ | is an asymptotically-unbiased test of the hypothesis $ H $ | ||
+ | with level $ \alpha $ | ||
+ | if | ||
+ | |||
+ | $$ | ||
+ | \lim\limits _ {n \rightarrow \infty } {\mathsf P} ( R _ {n} \mid \theta ) \leq \alpha , | ||
+ | \ \theta \in \Omega _ {H} , | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | \alpha \leq \lim\limits _ {n \rightarrow \infty } {\mathsf P} ( | ||
+ | R _ {n} \mid \theta ),\ \theta \in \Omega _ {K} . | ||
+ | $$ | ||
The function | The function | ||
− | + | $$ | |
+ | \lim\limits _ {n \rightarrow \infty } {\mathsf P} ( R _ {n} \mid \theta ) | ||
+ | $$ | ||
− | is called the asymptotic power function of the test | + | is called the asymptotic power function of the test $ R _ {n} $. |
Latest revision as of 11:31, 1 January 2021
A concept indicating that a statistical test is unbiased in the limit. For example, in the case of $ n $
independent samples from a one-dimensional distribution depending on a parameter $ \theta \in \Omega $,
let $ H $
be the null hypothesis: $ \theta \in \Omega _ {H} $,
and let $ K $
be the alternative:
$$ \theta \in \Omega _ {K} ,\ \Omega _ {H} \cup \Omega _ {K} = \Omega ,\ \ \Omega _ {H} \cap \Omega _ {K} = \emptyset . $$
The critical set $ R _ {n} $ in the $ n $-dimensional Euclidean space, $ n=1, 2 \dots $ is an asymptotically-unbiased test of the hypothesis $ H $ with level $ \alpha $ if
$$ \lim\limits _ {n \rightarrow \infty } {\mathsf P} ( R _ {n} \mid \theta ) \leq \alpha , \ \theta \in \Omega _ {H} , $$
$$ \alpha \leq \lim\limits _ {n \rightarrow \infty } {\mathsf P} ( R _ {n} \mid \theta ),\ \theta \in \Omega _ {K} . $$
The function
$$ \lim\limits _ {n \rightarrow \infty } {\mathsf P} ( R _ {n} \mid \theta ) $$
is called the asymptotic power function of the test $ R _ {n} $.
Asymptotically-unbiased test. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Asymptotically-unbiased_test&oldid=18499