Namespaces
Variants
Actions

Difference between revisions of "Minimization of an area"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (fix tex)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
The problem of finding the minimum of the area <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063990/m0639901.png" /> of a [[Riemann surface|Riemann surface]] to which a given domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063990/m0639902.png" /> of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063990/m0639903.png" />-plane is mapped by a one-to-one regular function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063990/m0639904.png" /> of a given class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063990/m0639905.png" />, that is, the problem of finding
+
<!--
 +
m0639901.png
 +
$#A+1 = 32 n = 0
 +
$#C+1 = 32 : ~/encyclopedia/old_files/data/M063/M.0603990 Minimization of an area
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063990/m0639906.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
(<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063990/m0639907.png" /> is the surface element). The integral in (*), taken over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063990/m0639908.png" />, is understood as the limit of integrals over domains <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063990/m0639909.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063990/m06399010.png" /> which exhaust the domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063990/m06399011.png" />, that is, are such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063990/m06399012.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063990/m06399013.png" /> and such that any closed set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063990/m06399014.png" /> lies in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063990/m06399015.png" /> from some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063990/m06399016.png" /> onwards.
+
The problem of finding the minimum of the area  $  A ( ) $
 +
of a [[Riemann surface|Riemann surface]] to which a given domain  $  B $
 +
of the $  z $-plane is mapped by a one-to-one regular function  $  F $
 +
of a given class  $  R $,  
 +
that is, the problem of finding
  
When <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063990/m06399017.png" /> is the class of functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063990/m06399018.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063990/m06399019.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063990/m06399020.png" />, regular in a given simply-connected domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063990/m06399021.png" /> containing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063990/m06399022.png" /> and having more than one boundary point, the minimum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063990/m06399023.png" /> of the areas <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063990/m06399024.png" /> of the images of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063990/m06399025.png" /> in the class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063990/m06399026.png" /> is given by the unique function univalently mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063990/m06399027.png" /> onto the full disc <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063990/m06399028.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063990/m06399029.png" /> is the conformal radius of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063990/m06399030.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063990/m06399031.png" /> (cf. [[Conformal radius of a domain|Conformal radius of a domain]]); moreover, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m063/m063990/m06399032.png" />.
+
$$ \tag{* }
 +
\min _ {F \in R }  A ( F  )  = \min _ {F
 +
\in R } \
 +
\iint_ { B } | F ^ { \prime } ( z) |  ^ {2}  d \sigma
 +
$$
 +
 
 +
( $  d \sigma $
 +
is the surface element). The integral in (*), taken over  $  B $,
 +
is understood as the limit of integrals over domains  $  B _ {n} $,
 +
$  n = 1 , 2 \dots $
 +
which exhaust the domain  $  B $,
 +
that is, are such that  $  \overline{B} _ {n} \subset  B $,
 +
$  B _ {n} \subset  B _ {n+1} $
 +
and such that any closed set  $  E \subset  B $
 +
lies in  $  B _ {n} $
 +
from some  $  n $
 +
onwards.
 +
 
 +
When  $  R $
 +
is the class of functions $  F ( z) $,
 +
$  F ( 0) = 0 $,  
 +
$  F ^ { \prime } ( 0) = 1 $,  
 +
regular in a given simply-connected domain $  B $
 +
containing $  z = 0 $
 +
and having more than one boundary point, the minimum $  A $
 +
of the areas $  A ( F  ) $
 +
of the images of $  B $
 +
in the class $  R $
 +
is given by the unique function univalently mapping $  B $
 +
onto the full disc $  | z | < r $,  
 +
where $  r $
 +
is the conformal radius of $  B $
 +
at $  z = 0 $(
 +
cf. [[Conformal radius of a domain|Conformal radius of a domain]]); moreover, $  A = \pi r  ^ {2} $.
  
 
The problem of finding the minimal area of the image of a multiply-connected domain has also been considered (see [[#References|[1]]]).
 
The problem of finding the minimal area of the image of a multiply-connected domain has also been considered (see [[#References|[1]]]).

Latest revision as of 20:36, 22 December 2020


The problem of finding the minimum of the area $ A ( F ) $ of a Riemann surface to which a given domain $ B $ of the $ z $-plane is mapped by a one-to-one regular function $ F $ of a given class $ R $, that is, the problem of finding

$$ \tag{* } \min _ {F \in R } A ( F ) = \min _ {F \in R } \ \iint_ { B } | F ^ { \prime } ( z) | ^ {2} d \sigma $$

( $ d \sigma $ is the surface element). The integral in (*), taken over $ B $, is understood as the limit of integrals over domains $ B _ {n} $, $ n = 1 , 2 \dots $ which exhaust the domain $ B $, that is, are such that $ \overline{B} _ {n} \subset B $, $ B _ {n} \subset B _ {n+1} $ and such that any closed set $ E \subset B $ lies in $ B _ {n} $ from some $ n $ onwards.

When $ R $ is the class of functions $ F ( z) $, $ F ( 0) = 0 $, $ F ^ { \prime } ( 0) = 1 $, regular in a given simply-connected domain $ B $ containing $ z = 0 $ and having more than one boundary point, the minimum $ A $ of the areas $ A ( F ) $ of the images of $ B $ in the class $ R $ is given by the unique function univalently mapping $ B $ onto the full disc $ | z | < r $, where $ r $ is the conformal radius of $ B $ at $ z = 0 $( cf. Conformal radius of a domain); moreover, $ A = \pi r ^ {2} $.

The problem of finding the minimal area of the image of a multiply-connected domain has also been considered (see [1]).

References

[1] G.M. Goluzin, "Geometric theory of functions of a complex variable" , Transl. Math. Monogr. , 26 , Amer. Math. Soc. (1969) (Translated from Russian)
How to Cite This Entry:
Minimization of an area. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Minimization_of_an_area&oldid=15923
This article was adapted from an original article by E.G. Goluzina (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article