Difference between revisions of "Interpolation spline"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
m (fix tex) |
||
Line 16: | Line 16: | ||
S _ {m} ( \Delta _ {n} ; x ) = \ | S _ {m} ( \Delta _ {n} ; x ) = \ | ||
a _ {0} + a _ {1} x + \dots | a _ {0} + a _ {1} x + \dots | ||
− | + a _ {m-} | + | + a _ {m-1} x ^ {m-1} + |
− | \sum _ { k= } | + | \sum _ { k= 0} ^ { n-1 } |
C _ {k} ( x - x _ {k} ) _ {+} ^ {m} , | C _ {k} ( x - x _ {k} ) _ {+} ^ {m} , | ||
$$ | $$ | ||
Line 38: | Line 38: | ||
one usually takes $ \overline{x}\; _ {i} = x _ {i} $, | one usually takes $ \overline{x}\; _ {i} = x _ {i} $, | ||
$ i = 0 \dots n $, | $ i = 0 \dots n $, | ||
− | and since for $ S _ {2k+} | + | and since for $ S _ {2k+1} ( \Delta _ {n} ; x ) $ |
there still are $ 2 k $ | there still are $ 2 k $ | ||
free parameters, one prescribes $ k $ | free parameters, one prescribes $ k $ | ||
additional conditions at $ x _ {0} $ | additional conditions at $ x _ {0} $ | ||
and $ x _ {n} $, | and $ x _ {n} $, | ||
− | e.g. $ S _ {2k+} | + | e.g. $ S _ {2k+1} ^ {( j)} ( \Delta _ {n} ; z ) = y _ {z} ^ {( j)} $, |
$ j = 1 \dots k $, | $ j = 1 \dots k $, | ||
$ z = x _ {0} , x _ {n} $, | $ z = x _ {0} , x _ {n} $, | ||
− | where $ y _ {z} ^ {( | + | where $ y _ {z} ^ {( j)} $ |
− | are given numbers. If the $ y _ {z} ^ {( | + | are given numbers. If the $ y _ {z} ^ {( j)} $ |
linearly depend on the given function, then the corresponding spline linearly depends on this function. For $ m = 2 k $ | linearly depend on the given function, then the corresponding spline linearly depends on this function. For $ m = 2 k $ | ||
one usually takes $ \overline{x}\; _ {0} = x _ {0} $, | one usually takes $ \overline{x}\; _ {0} = x _ {0} $, | ||
$ \overline{x}\; _ {n} = x _ {n} $ | $ \overline{x}\; _ {n} = x _ {n} $ | ||
− | and $ x _ {i} = ( \overline{x}\; _ {i-} | + | and $ x _ {i} = ( \overline{x}\; _ {i-1} + \overline{x}\; _ {i} ) / 2 $, |
$ i = 1 \dots n - 1 $, | $ i = 1 \dots n - 1 $, | ||
and $ k $ | and $ k $ | ||
Line 59: | Line 59: | ||
has an $ ( m - s ) $- | has an $ ( m - s ) $- | ||
th continuous and an $ ( m - s + 1 ) $- | th continuous and an $ ( m - s + 1 ) $- | ||
− | st discontinuous derivative at $ x _ {1} \dots x _ {n-} | + | st discontinuous derivative at $ x _ {1} \dots x _ {n-1} $, |
then for $ s \geq 2 $ | then for $ s \geq 2 $ | ||
the first $ ( s - 1 ) $- | the first $ ( s - 1 ) $- | ||
Line 73: | Line 73: | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> C. de Boor, "Splines as linear combinations of | + | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> C. de Boor, "Splines as linear combinations of $B$-splines, a survey" G.G. Lorentz (ed.) C.K. Chri (ed.) L.L. Schumaker (ed.) , ''Approximation theory'' , '''2''' , Acad. Press (1976)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> I.J. Schoenberg, "Cardinal spline interpolation" , SIAM (1973)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> L.L. Schumaker, "Spline functions, basic theory" , Wiley (1981)</TD></TR></table> |
Latest revision as of 12:11, 16 December 2020
A spline
$$ S _ {m} ( \Delta _ {n} ; x ) = \ a _ {0} + a _ {1} x + \dots + a _ {m-1} x ^ {m-1} + \sum _ { k= 0} ^ { n-1 } C _ {k} ( x - x _ {k} ) _ {+} ^ {m} , $$
where
$$ t _ {+} = \ \left \{ \begin{array}{ll} t & t \geq 0 , \\ 0 & t < 0 , \\ \end{array} \ \ x _ {0} < \dots < x _ {n} , \right .$$
that coincides with a given function at given distinct points $ \{ \overline{x}\; _ {i} \} $. For $ m = 2 k + 1 $ one usually takes $ \overline{x}\; _ {i} = x _ {i} $, $ i = 0 \dots n $, and since for $ S _ {2k+1} ( \Delta _ {n} ; x ) $ there still are $ 2 k $ free parameters, one prescribes $ k $ additional conditions at $ x _ {0} $ and $ x _ {n} $, e.g. $ S _ {2k+1} ^ {( j)} ( \Delta _ {n} ; z ) = y _ {z} ^ {( j)} $, $ j = 1 \dots k $, $ z = x _ {0} , x _ {n} $, where $ y _ {z} ^ {( j)} $ are given numbers. If the $ y _ {z} ^ {( j)} $ linearly depend on the given function, then the corresponding spline linearly depends on this function. For $ m = 2 k $ one usually takes $ \overline{x}\; _ {0} = x _ {0} $, $ \overline{x}\; _ {n} = x _ {n} $ and $ x _ {i} = ( \overline{x}\; _ {i-1} + \overline{x}\; _ {i} ) / 2 $, $ i = 1 \dots n - 1 $, and $ k $ additional conditions are prescribed at $ x _ {0} $ and $ x _ {n} $. If the spline $ S _ {m} ( \Delta _ {n} ; x ) $ has an $ ( m - s ) $- th continuous and an $ ( m - s + 1 ) $- st discontinuous derivative at $ x _ {1} \dots x _ {n-1} $, then for $ s \geq 2 $ the first $ ( s - 1 ) $- st derivatives of the spline are prescribed at these points, requiring them to coincide with the corresponding derivatives of the function to be interpolated. Interpolation $ L $- and $ L _ {q} $- splines, as well as interpolation splines in several variables, have also been considered. Interpolation splines are used to approximate a function using its values on a grid. In contrast to interpolation polynomials, there exist matrices of nodes such that the interpolation splines converge to an arbitrary given continuous integrable function.
References
[1] | S.B. Stechkin, Yu.N. Subbotin, "Splines in numerical mathematics" , Moscow (1976) (In Russian) |
[2] | J.H. Ahlberg, E.N. Nilson, J.F. Walsh, "Theory of splines and their applications" , Acad. Press (1967) |
Comments
Cf. also Spline; Spline approximation; Spline interpolation.
References
[a1] | C. de Boor, "Splines as linear combinations of $B$-splines, a survey" G.G. Lorentz (ed.) C.K. Chri (ed.) L.L. Schumaker (ed.) , Approximation theory , 2 , Acad. Press (1976) |
[a2] | I.J. Schoenberg, "Cardinal spline interpolation" , SIAM (1973) |
[a3] | L.L. Schumaker, "Spline functions, basic theory" , Wiley (1981) |
Interpolation spline. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Interpolation_spline&oldid=47396