Difference between revisions of "Interpolation spline"
(Importing text file) |
m (fix tex) |
||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | i0519801.png | ||
+ | $#A+1 = 32 n = 1 | ||
+ | $#C+1 = 32 : ~/encyclopedia/old_files/data/I051/I.0501980 Interpolation spline | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
A spline | A spline | ||
− | + | $$ | |
+ | S _ {m} ( \Delta _ {n} ; x ) = \ | ||
+ | a _ {0} + a _ {1} x + \dots | ||
+ | + a _ {m-1} x ^ {m-1} + | ||
+ | \sum _ { k= 0} ^ { n-1 } | ||
+ | C _ {k} ( x - x _ {k} ) _ {+} ^ {m} , | ||
+ | $$ | ||
where | where | ||
− | + | $$ | |
+ | t _ {+} = \ | ||
+ | \left \{ | ||
+ | \begin{array}{ll} | ||
+ | t & t \geq 0 , \\ | ||
+ | 0 & t < 0 , \\ | ||
+ | \end{array} | ||
+ | \ \ | ||
+ | x _ {0} < \dots < x _ {n} , | ||
+ | \right .$$ | ||
− | that coincides with a given function at given distinct points | + | that coincides with a given function at given distinct points $ \{ \overline{x}\; _ {i} \} $. |
+ | For $ m = 2 k + 1 $ | ||
+ | one usually takes $ \overline{x}\; _ {i} = x _ {i} $, | ||
+ | $ i = 0 \dots n $, | ||
+ | and since for $ S _ {2k+1} ( \Delta _ {n} ; x ) $ | ||
+ | there still are $ 2 k $ | ||
+ | free parameters, one prescribes $ k $ | ||
+ | additional conditions at $ x _ {0} $ | ||
+ | and $ x _ {n} $, | ||
+ | e.g. $ S _ {2k+1} ^ {( j)} ( \Delta _ {n} ; z ) = y _ {z} ^ {( j)} $, | ||
+ | $ j = 1 \dots k $, | ||
+ | $ z = x _ {0} , x _ {n} $, | ||
+ | where $ y _ {z} ^ {( j)} $ | ||
+ | are given numbers. If the $ y _ {z} ^ {( j)} $ | ||
+ | linearly depend on the given function, then the corresponding spline linearly depends on this function. For $ m = 2 k $ | ||
+ | one usually takes $ \overline{x}\; _ {0} = x _ {0} $, | ||
+ | $ \overline{x}\; _ {n} = x _ {n} $ | ||
+ | and $ x _ {i} = ( \overline{x}\; _ {i-1} + \overline{x}\; _ {i} ) / 2 $, | ||
+ | $ i = 1 \dots n - 1 $, | ||
+ | and $ k $ | ||
+ | additional conditions are prescribed at $ x _ {0} $ | ||
+ | and $ x _ {n} $. | ||
+ | If the spline $ S _ {m} ( \Delta _ {n} ; x ) $ | ||
+ | has an $ ( m - s ) $- | ||
+ | th continuous and an $ ( m - s + 1 ) $- | ||
+ | st discontinuous derivative at $ x _ {1} \dots x _ {n-1} $, | ||
+ | then for $ s \geq 2 $ | ||
+ | the first $ ( s - 1 ) $- | ||
+ | st derivatives of the spline are prescribed at these points, requiring them to coincide with the corresponding derivatives of the function to be interpolated. Interpolation $ L $- | ||
+ | and $ L _ {q} $- | ||
+ | splines, as well as interpolation splines in several variables, have also been considered. Interpolation splines are used to approximate a function using its values on a grid. In contrast to interpolation polynomials, there exist matrices of nodes such that the interpolation splines converge to an arbitrary given continuous integrable function. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> S.B. Stechkin, Yu.N. Subbotin, "Splines in numerical mathematics" , Moscow (1976) (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J.H. Ahlberg, E.N. Nilson, J.F. Walsh, "Theory of splines and their applications" , Acad. Press (1967)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> S.B. Stechkin, Yu.N. Subbotin, "Splines in numerical mathematics" , Moscow (1976) (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> J.H. Ahlberg, E.N. Nilson, J.F. Walsh, "Theory of splines and their applications" , Acad. Press (1967)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
Line 18: | Line 73: | ||
====References==== | ====References==== | ||
− | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> C. de Boor, "Splines as linear combinations of | + | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> C. de Boor, "Splines as linear combinations of $B$-splines, a survey" G.G. Lorentz (ed.) C.K. Chri (ed.) L.L. Schumaker (ed.) , ''Approximation theory'' , '''2''' , Acad. Press (1976)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> I.J. Schoenberg, "Cardinal spline interpolation" , SIAM (1973)</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> L.L. Schumaker, "Spline functions, basic theory" , Wiley (1981)</TD></TR></table> |
Latest revision as of 12:11, 16 December 2020
A spline
$$ S _ {m} ( \Delta _ {n} ; x ) = \ a _ {0} + a _ {1} x + \dots + a _ {m-1} x ^ {m-1} + \sum _ { k= 0} ^ { n-1 } C _ {k} ( x - x _ {k} ) _ {+} ^ {m} , $$
where
$$ t _ {+} = \ \left \{ \begin{array}{ll} t & t \geq 0 , \\ 0 & t < 0 , \\ \end{array} \ \ x _ {0} < \dots < x _ {n} , \right .$$
that coincides with a given function at given distinct points $ \{ \overline{x}\; _ {i} \} $. For $ m = 2 k + 1 $ one usually takes $ \overline{x}\; _ {i} = x _ {i} $, $ i = 0 \dots n $, and since for $ S _ {2k+1} ( \Delta _ {n} ; x ) $ there still are $ 2 k $ free parameters, one prescribes $ k $ additional conditions at $ x _ {0} $ and $ x _ {n} $, e.g. $ S _ {2k+1} ^ {( j)} ( \Delta _ {n} ; z ) = y _ {z} ^ {( j)} $, $ j = 1 \dots k $, $ z = x _ {0} , x _ {n} $, where $ y _ {z} ^ {( j)} $ are given numbers. If the $ y _ {z} ^ {( j)} $ linearly depend on the given function, then the corresponding spline linearly depends on this function. For $ m = 2 k $ one usually takes $ \overline{x}\; _ {0} = x _ {0} $, $ \overline{x}\; _ {n} = x _ {n} $ and $ x _ {i} = ( \overline{x}\; _ {i-1} + \overline{x}\; _ {i} ) / 2 $, $ i = 1 \dots n - 1 $, and $ k $ additional conditions are prescribed at $ x _ {0} $ and $ x _ {n} $. If the spline $ S _ {m} ( \Delta _ {n} ; x ) $ has an $ ( m - s ) $- th continuous and an $ ( m - s + 1 ) $- st discontinuous derivative at $ x _ {1} \dots x _ {n-1} $, then for $ s \geq 2 $ the first $ ( s - 1 ) $- st derivatives of the spline are prescribed at these points, requiring them to coincide with the corresponding derivatives of the function to be interpolated. Interpolation $ L $- and $ L _ {q} $- splines, as well as interpolation splines in several variables, have also been considered. Interpolation splines are used to approximate a function using its values on a grid. In contrast to interpolation polynomials, there exist matrices of nodes such that the interpolation splines converge to an arbitrary given continuous integrable function.
References
[1] | S.B. Stechkin, Yu.N. Subbotin, "Splines in numerical mathematics" , Moscow (1976) (In Russian) |
[2] | J.H. Ahlberg, E.N. Nilson, J.F. Walsh, "Theory of splines and their applications" , Acad. Press (1967) |
Comments
Cf. also Spline; Spline approximation; Spline interpolation.
References
[a1] | C. de Boor, "Splines as linear combinations of $B$-splines, a survey" G.G. Lorentz (ed.) C.K. Chri (ed.) L.L. Schumaker (ed.) , Approximation theory , 2 , Acad. Press (1976) |
[a2] | I.J. Schoenberg, "Cardinal spline interpolation" , SIAM (1973) |
[a3] | L.L. Schumaker, "Spline functions, basic theory" , Wiley (1981) |
Interpolation spline. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Interpolation_spline&oldid=17062