Difference between revisions of "Weierstrass representation of a minimal surface"
(Importing text file) |
m (AUTOMATIC EDIT (latexlist): Replaced 52 formulas out of 52 by TEX code with an average confidence of 2.0 and a minimal confidence of 2.0.) |
||
Line 1: | Line 1: | ||
− | + | <!--This article has been texified automatically. Since there was no Nroff source code for this article, | |
+ | the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist | ||
+ | was used. | ||
+ | If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category. | ||
− | + | Out of 52 formulas, 52 were replaced by TEX code.--> | |
− | + | {{TEX|semi-auto}}{{TEX|done}} | |
+ | Let $M$ be a [[Riemann surface|Riemann surface]]. A harmonic conformal mapping $X : M \rightarrow {\bf R} ^ { n }$ then defines a [[Minimal surface|minimal surface]] in ${\bf R} ^ { n }$, $n \geq 3$ (cf. also [[Harmonic function|Harmonic function]]; [[Conformal mapping|Conformal mapping]]). Let $z = u + i v$ be local [[Isothermal coordinates|isothermal coordinates]]; then | ||
− | + | \begin{equation*} \sum _ { j = 1 } ^ { n } \Bigl( \frac { \partial X _ { j } } { \partial z } \Bigr) ^ { 2 } = 0. \end{equation*} | |
− | is | + | Since $X$ is harmonic, |
− | + | \begin{equation*} \omega _ { j } = 2 \frac { \partial X _ { j } } { \partial z } d z \end{equation*} | |
− | + | is a holomorphic $1$-form on $M$. Hence any (branched) minimal surface in ${\bf R} ^ { n }$ can be given by $n$ meromorphic $1$-forms $\omega _ { j }$ satisfying $\sum _ { j = 1 } ^ { n } \omega _ { j } ^ { 2 } = 0$, and $X$ can be expressed as | |
− | + | \begin{equation} \tag{a1} X ( p ) = \operatorname { Re } \int _ { p _ { 0 } } ^ { p } ( \omega _ { 1 } , \ldots , \omega _ { n } ). \end{equation} | |
− | + | Such an $X$ is well defined on $M$ if and only if for any [[Loop|loop]] $C$ in $M$, | |
− | + | \begin{equation} \tag{a2} \operatorname { Re } \int _ { C } ( \omega _ { 1 } , \dots , \omega _ { n } ) = ( 0 , \dots , 0 ). \end{equation} | |
− | + | For $n = 3$, one gets a [[Meromorphic function|meromorphic function]] $g$ and a meromorphic $1$-form $ \eta $, | |
− | + | \begin{equation*} g = - \frac { \omega _ { 1 } + i \omega _ { 2 } } { \omega _ { 3 } } = \frac { \omega _ { 3 } } { \omega _ { 1 } - i \omega _ { 2 } } , \eta = g ^ { - 1 } \omega _ { 3 }. \end{equation*} | |
− | + | On the other hand, given a meromorphic function $g$ and a meromorphic $1$-form $ \eta $ on $M$, define | |
− | + | \begin{equation} \tag{a3} \omega _ { 1 } = \frac { 1 } { 2 } ( 1 - g ^ { 2 } ) \eta , \omega _ { 2 } = \frac { i } { 2 } ( 1 + g ^ { 2 } ) \eta , \omega _ { 3 } = g \eta ; \end{equation} | |
− | + | then $\sum _ { j = 1 } ^ { 3 } \omega _ { j } ^ { 2 } = 0$. Thus, (a3) together with (a1) defines a minimal surface in $\mathbf{R} ^ { 3 }$ and is called the Weierstrass representation of the minimal surface via the Weierstrass data $( g , \eta )$. | |
− | + | The meromorphic function $g$ has the geometric meaning that it is the composite of the spherical mapping (or unit normal vector) $N : M \rightarrow S ^ { 2 }$ and the [[Stereographic projection|stereographic projection]] from the north pole, where | |
− | + | \begin{equation*} N = \frac { 1 } { | g | ^ { 2 } + 1 } ( 2 \operatorname { Re } g , 2 \operatorname { Im } g , | g | ^ { 2 } - 1 ) \end{equation*} | |
− | + | and $g$ is also called the Gauss map of the minimal surface. | |
− | + | The [[First fundamental form|first fundamental form]] and the [[Gaussian curvature|Gaussian curvature]] of the surface $X ( M )$ can be expressed via $( g , \eta )$, | |
− | + | \begin{equation*} d s ^ { 2 } = \frac { 1 } { 4 } ( 1 + | g | ^ { 2 } ) ^ { 2 } | \eta | ^ { 2 } = \frac { 1 } { 2 } \sum _ { j = 1 } ^ { 3 } | \omega _ { j } | ^ { 2 }, \end{equation*} | |
− | + | \begin{equation*} K = - \left( \frac { 4 | d g | } { ( 1 + | g | ^ { 2 } ) ^ { 2 } | \eta | } \right) ^ { 2 }. \end{equation*} | |
− | + | Hence $X ( M )$ is a regular surface if and only if $\sum _ { j = 1 } ^ { 3 } | \omega _ { j } | ^ { 2 } \neq 0$ on $M$. | |
− | + | The [[Second fundamental form|second fundamental form]] of $X ( M )$ can be expressed as | |
+ | |||
+ | \begin{equation*} \operatorname{II}( W , V ) = - \operatorname { Re } ( \eta ( W ) d g ( V ) ). \end{equation*} | ||
+ | |||
+ | Moreover, $W$ is an asymptotic direction if and only if $\eta ( W ) d g ( W ) \in i \mathbf{R}$, and $W$ is a principal curvature direction if and only if $\eta ( W ) d g ( W ) \in {\bf{R}}$. | ||
The local Weierstrass representation was discovered in the 1860{}s by K. Enneper and K. Weierstrass. R. Osserman gave the general form on a Riemann surface in the 1960{}s, see [[#References|[a1]]] for more details. | The local Weierstrass representation was discovered in the 1860{}s by K. Enneper and K. Weierstrass. R. Osserman gave the general form on a Riemann surface in the 1960{}s, see [[#References|[a1]]] for more details. | ||
====References==== | ====References==== | ||
− | <table>< | + | <table><tr><td valign="top">[a1]</td> <td valign="top"> R. Osserman., "A survey of minimal surfaces" , Dover (1986)</td></tr></table> |
Latest revision as of 16:57, 1 July 2020
Let $M$ be a Riemann surface. A harmonic conformal mapping $X : M \rightarrow {\bf R} ^ { n }$ then defines a minimal surface in ${\bf R} ^ { n }$, $n \geq 3$ (cf. also Harmonic function; Conformal mapping). Let $z = u + i v$ be local isothermal coordinates; then
\begin{equation*} \sum _ { j = 1 } ^ { n } \Bigl( \frac { \partial X _ { j } } { \partial z } \Bigr) ^ { 2 } = 0. \end{equation*}
Since $X$ is harmonic,
\begin{equation*} \omega _ { j } = 2 \frac { \partial X _ { j } } { \partial z } d z \end{equation*}
is a holomorphic $1$-form on $M$. Hence any (branched) minimal surface in ${\bf R} ^ { n }$ can be given by $n$ meromorphic $1$-forms $\omega _ { j }$ satisfying $\sum _ { j = 1 } ^ { n } \omega _ { j } ^ { 2 } = 0$, and $X$ can be expressed as
\begin{equation} \tag{a1} X ( p ) = \operatorname { Re } \int _ { p _ { 0 } } ^ { p } ( \omega _ { 1 } , \ldots , \omega _ { n } ). \end{equation}
Such an $X$ is well defined on $M$ if and only if for any loop $C$ in $M$,
\begin{equation} \tag{a2} \operatorname { Re } \int _ { C } ( \omega _ { 1 } , \dots , \omega _ { n } ) = ( 0 , \dots , 0 ). \end{equation}
For $n = 3$, one gets a meromorphic function $g$ and a meromorphic $1$-form $ \eta $,
\begin{equation*} g = - \frac { \omega _ { 1 } + i \omega _ { 2 } } { \omega _ { 3 } } = \frac { \omega _ { 3 } } { \omega _ { 1 } - i \omega _ { 2 } } , \eta = g ^ { - 1 } \omega _ { 3 }. \end{equation*}
On the other hand, given a meromorphic function $g$ and a meromorphic $1$-form $ \eta $ on $M$, define
\begin{equation} \tag{a3} \omega _ { 1 } = \frac { 1 } { 2 } ( 1 - g ^ { 2 } ) \eta , \omega _ { 2 } = \frac { i } { 2 } ( 1 + g ^ { 2 } ) \eta , \omega _ { 3 } = g \eta ; \end{equation}
then $\sum _ { j = 1 } ^ { 3 } \omega _ { j } ^ { 2 } = 0$. Thus, (a3) together with (a1) defines a minimal surface in $\mathbf{R} ^ { 3 }$ and is called the Weierstrass representation of the minimal surface via the Weierstrass data $( g , \eta )$.
The meromorphic function $g$ has the geometric meaning that it is the composite of the spherical mapping (or unit normal vector) $N : M \rightarrow S ^ { 2 }$ and the stereographic projection from the north pole, where
\begin{equation*} N = \frac { 1 } { | g | ^ { 2 } + 1 } ( 2 \operatorname { Re } g , 2 \operatorname { Im } g , | g | ^ { 2 } - 1 ) \end{equation*}
and $g$ is also called the Gauss map of the minimal surface.
The first fundamental form and the Gaussian curvature of the surface $X ( M )$ can be expressed via $( g , \eta )$,
\begin{equation*} d s ^ { 2 } = \frac { 1 } { 4 } ( 1 + | g | ^ { 2 } ) ^ { 2 } | \eta | ^ { 2 } = \frac { 1 } { 2 } \sum _ { j = 1 } ^ { 3 } | \omega _ { j } | ^ { 2 }, \end{equation*}
\begin{equation*} K = - \left( \frac { 4 | d g | } { ( 1 + | g | ^ { 2 } ) ^ { 2 } | \eta | } \right) ^ { 2 }. \end{equation*}
Hence $X ( M )$ is a regular surface if and only if $\sum _ { j = 1 } ^ { 3 } | \omega _ { j } | ^ { 2 } \neq 0$ on $M$.
The second fundamental form of $X ( M )$ can be expressed as
\begin{equation*} \operatorname{II}( W , V ) = - \operatorname { Re } ( \eta ( W ) d g ( V ) ). \end{equation*}
Moreover, $W$ is an asymptotic direction if and only if $\eta ( W ) d g ( W ) \in i \mathbf{R}$, and $W$ is a principal curvature direction if and only if $\eta ( W ) d g ( W ) \in {\bf{R}}$.
The local Weierstrass representation was discovered in the 1860{}s by K. Enneper and K. Weierstrass. R. Osserman gave the general form on a Riemann surface in the 1960{}s, see [a1] for more details.
References
[a1] | R. Osserman., "A survey of minimal surfaces" , Dover (1986) |
Weierstrass representation of a minimal surface. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Weierstrass_representation_of_a_minimal_surface&oldid=13727