Namespaces
Variants
Actions

Difference between revisions of "Generalized function algebras"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (MR/ZBL numbers added)
m (AUTOMATIC EDIT (latexlist): Replaced 108 formulas out of 109 by TEX code with an average confidence of 2.0 and a minimal confidence of 2.0.)
Line 1: Line 1:
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g1300301.png" /> be an open subset of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g1300302.png" />. A generalized function algebra is an associative, commutative [[Differential-algebra(2)|differential algebra]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g1300303.png" /> containing the space of distributions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g1300304.png" /> or other distribution spaces as a linear subspace (cf. also [[Generalized functions, space of|Generalized functions, space of]]). An early construction of a non-associative, non-commutative algebra was given by H. König [[#References|[a6]]]. The main current (2000) direction has been to construct associative, commutative algebras as reduced powers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g1300305.png" /> of classical function spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g1300306.png" />. A further approach uses analytic continuation and asymptotic series of distributions.
+
<!--This article has been texified automatically. Since there was no Nroff source code for this article,  
 +
the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist
 +
was used.
 +
If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category.
  
To describe the principles, consider the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g1300307.png" /> of infinitely differentiable functions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g1300308.png" /> (cf. also [[Differentiable function|Differentiable function]]). Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g1300309.png" /> be an infinite index set, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003010.png" /> a differential subalgebra of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003011.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003012.png" /> a differential ideal in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003013.png" />. The generalized function algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003014.png" /> is defined as the factor algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003015.png" />. Assuming that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003016.png" /> is a directed set, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003017.png" /> be a net in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003018.png" /> (cf. also [[Net (directed set)|Net (directed set)]]) converging to the Dirac measure in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003019.png" /> (cf. also [[Generalized functions, space of|Generalized functions, space of]]). Any compactly supported distribution <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003020.png" /> can be imbedded in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003021.png" /> by convolution (cf. also [[Generalized function|Generalized function]]): <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003022.png" />. Appropriate conditions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003023.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003024.png" /> will guarantee that this extends to an imbedding of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003025.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003026.png" />. An imbedding of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003027.png" /> is obtained, provided the family <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003028.png" /> forms a [[Sheaf|sheaf]] of differential algebras on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003029.png" /> (the restriction mappings are defined componentwise on representatives). This imbedding preserves the derivatives of distributions. It follows from the impossibility result of L. Schwartz (see [[Multiplication of distributions|Multiplication of distributions]]) that it cannot retain the pointwise product of continuous functions at the same time. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003030.png" /> is contained in the subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003031.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003032.png" /> comprised by those nets which converge weakly to zero, then an equivalence relation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003033.png" /> can be defined on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003034.png" /> by requiring that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003035.png" /> for representatives <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003036.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003037.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003038.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003039.png" />. The pointwise product of continuous functions (as well as all products obtained by [[Multiplication of distributions|multiplication of distributions]]) are retained up to this equivalence relation. A list of typical examples of generalized function algebras follows:
+
Out of 109 formulas, 108 were replaced by TEX code.-->
  
1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003040.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003041.png" />: there is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003042.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003043.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003044.png" />. The algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003045.png" /> was introduced by C. Schmieden and D. Laugwitz [[#References|[a10]]] in their foundations of infinitesimal analysis.
+
{{TEX|semi-auto}}{{TEX|partial}}
 +
Let $\Omega$ be an open subset of ${\bf R} ^ { n }$. A generalized function algebra is an associative, commutative [[Differential-algebra(2)|differential algebra]] $\mathcal{A} ( \Omega )$ containing the space of distributions $\mathcal{D} ^ { \prime } ( \Omega )$ or other distribution spaces as a linear subspace (cf. also [[Generalized functions, space of|Generalized functions, space of]]). An early construction of a non-associative, non-commutative algebra was given by H. König [[#References|[a6]]]. The main current (2000) direction has been to construct associative, commutative algebras as reduced powers $\nu ^ { \Lambda } / \mathcal{I}$ of classical function spaces $\mathcal{V}$. A further approach uses analytic continuation and asymptotic series of distributions.
  
2) Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003046.png" /> be a free [[Ultrafilter|ultrafilter]] on the infinite set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003047.png" /> and define <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003048.png" />: the set of indices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003049.png" /> belongs to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003050.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003051.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003052.png" /> is an instance of the ultrapower construction of the algebra of internal smooth functions of [[Non-standard analysis|non-standard analysis]] (A. Robinson [[#References|[a8]]]).
+
To describe the principles, consider the space $\mathcal{V} = \mathcal{C} ^ { \infty } ( \Omega )$ of infinitely differentiable functions on $\Omega$ (cf. also [[Differentiable function|Differentiable function]]). Let $\Lambda$ be an infinite index set, $\mathcal{B}$ a differential subalgebra of $\mathcal{V} ^ { \Lambda }$ and $\cal I$ a differential ideal in $\mathcal{B}$. The generalized function algebra $\mathcal{A} ( \Omega )$ is defined as the factor algebra $\mathcal{A} ( \Omega ) = \mathcal{B} / \mathcal{I}$. Assuming that $\Lambda$ is a directed set, let $( \varphi _ { \lambda } ) _ { \lambda \in \Lambda }$ be a net in $\mathcal{C} ^ { \infty } ( \mathbf{R} ^ { n } )$ (cf. also [[Net (directed set)|Net (directed set)]]) converging to the Dirac measure in $\mathcal{D} ^ { \prime } ( \mathbf{R} ^ { n } )$ (cf. also [[Generalized functions, space of|Generalized functions, space of]]). Any compactly supported distribution $w \in \mathcal{E} ^ { \prime } ( \Omega )$ can be imbedded in $\mathcal{V} ^ { \Lambda }$ by convolution (cf. also [[Generalized function|Generalized function]]): $w \mapsto ( w ^ { * } \varphi _ { \lambda } ) _ { \lambda \in \Lambda }$. Appropriate conditions on $\mathcal{B}$ and $\cal I$ will guarantee that this extends to an imbedding of ${\cal E} ^ { \prime } ( \Omega )$ into $\mathcal{A} ( \Omega )$. An imbedding of $\mathcal{D} ^ { \prime } ( \Omega )$ is obtained, provided the family $\{ \mathcal{A} ( \Omega ) : \Omega \text { open } \}$ forms a [[Sheaf|sheaf]] of differential algebras on ${\bf R} ^ { n }$ (the restriction mappings are defined componentwise on representatives). This imbedding preserves the derivatives of distributions. It follows from the impossibility result of L. Schwartz (see [[Multiplication of distributions|Multiplication of distributions]]) that it cannot retain the pointwise product of continuous functions at the same time. If $\cal I$ is contained in the subspace $\mathcal Z$ of $\mathcal{V} ^ { \Lambda }$ comprised by those nets which converge weakly to zero, then an equivalence relation $u \sim v$ can be defined on $\mathcal{A} ( \Omega )$ by requiring that $( u _ { \lambda } - v _ { \lambda } ) _ { \lambda \in \Lambda } \in \mathcal{Z}$ for representatives $( u _ { \lambda } ) _ { \lambda \in \Lambda }$ and $( v _ { \lambda } ) _ { \lambda \in \Lambda }$ of $u$ and $v$. The pointwise product of continuous functions (as well as all products obtained by [[Multiplication of distributions|multiplication of distributions]]) are retained up to this equivalence relation. A list of typical examples of generalized function algebras follows:
  
Neither 1) nor 2) provide sheaves on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003053.png" />. To get a sheaf, localization must be introduced:
+
1) $\mathcal{B} = ( \mathcal{C} ^ { \infty } ( \Omega ) ) ^ { \mathbf{N} }$, ${\cal I} _ { 0 } = \{ ( u _ { j } ) _ { j \in \bf N }$: there is $j _0$ such that $u _ { j } \equiv 0$ for $j \geq j_0 \}$. The algebra $\mathcal{A} ( \Omega ) = \mathcal{B} / \mathcal{I} _ { 0 }$ was introduced by C. Schmieden and D. Laugwitz [[#References|[a10]]] in their foundations of infinitesimal analysis.
  
3) Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003054.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003055.png" />: for each compact subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003056.png" /> there is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003057.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003058.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003059.png" />. The algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003060.png" /> was introduced by Yu.V. Egorov [[#References|[a3]]] (cf. also [[Egorov generalized function algebra|Egorov generalized function algebra]]).
+
2) Let $\mathcal U$ be a free [[Ultrafilter|ultrafilter]] on the infinite set $\Lambda$ and define ${\cal I _ { U } }= \{ ( u _ { \lambda } ) _ { \lambda \in \Lambda }$: the set of indices $\{ \lambda : u _ { \lambda } \equiv 0 \}$ belongs to ${\cal U} \}$, let $\mathcal{B} = ( \mathcal{C} ^ { \infty } ( \Omega ) ) ^ { \Lambda }$. Then $\square ^ { * } \mathcal{C} ^ { \infty } ( \Omega ) = \mathcal{B} / \mathcal{I}_{ \mathcal{U}}$ is an instance of the ultrapower construction of the algebra of internal smooth functions of [[Non-standard analysis|non-standard analysis]] (A. Robinson [[#References|[a8]]]).
  
4) Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003061.png" />: for each compact subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003062.png" /> and each multi-index <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003063.png" /> there is an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003064.png" /> such that the supremum of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003065.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003066.png" /> is of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003067.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003068.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003069.png" />: for each compact subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003070.png" />, each multi-index <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003071.png" /> and each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003072.png" />, the supremum of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003073.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003074.png" /> is of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003075.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003076.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003077.png" /> is one of the versions of the algebras of J.F. Colombeau [[#References|[a1]]] (cf. also [[Colombeau generalized function algebras|Colombeau generalized function algebras]]). It is distinguished by the fact that the imbedding of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003078.png" /> gives <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003079.png" /> as a faithful subalgebra.
+
Neither 1) nor 2) provide sheaves on ${\bf R} ^ { n }$. To get a sheaf, localization must be introduced:
  
5) Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003080.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003081.png" />: there is a closed, nowhere-dense subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003082.png" /> such that for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003083.png" /> there are a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003084.png" /> and a neighbourhood <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003085.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003086.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003087.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003088.png" />. This is the nowhere dense ideal introduced by E.E. Rosinger [[#References|[a9]]] (cf. also [[Rosinger nowhere-dense generalized function algebra|Rosinger nowhere-dense generalized function algebra]]). The algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003089.png" /> contains the algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003090.png" /> of smooth functions defined off some nowhere-dense set as a subalgebra. Since <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003091.png" />, the imbedding of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003092.png" /> cannot be done by convolution, but uses an algebraic basis.
+
3) Let $\mathcal{B} = ( \mathcal{C} ^ { \infty } ( \Omega ) ) ^ { \mathbf{N} }$, ${\cal I} _ { 0 , \operatorname{loc} } = \{ ( u _ { j } ) _ { j \in \bf N }$: for each compact subset $K \subset \Omega$ there is a $j _0$ such that $u _ { j } | _ { K } \equiv 0$ for $j \geq j_0 \}$. The algebra $\mathcal{A}( \Omega ) = \mathcal{B} / \mathcal{I}_{ 0 , \operatorname { loc }}$ was introduced by Yu.V. Egorov [[#References|[a3]]] (cf. also [[Egorov generalized function algebra|Egorov generalized function algebra]]).
  
There are many variations on this theme, different sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003093.png" />, different spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003094.png" />. The algebras can be defined on smooth manifolds as well. Usually, further operations can be applied to the elements of these algebras: superposition with non-linear mappings, restriction to submanifolds, pointwise evaluation (with values in the corresponding ring of constants).
+
4) Let $\mathcal{E} _ { M } = \{ ( u _ { \varepsilon } ) _ { \varepsilon &gt; 0 } \in \mathcal{C} ^ { \infty } ( \Omega ) ^ { ( 0 , \infty ) }$: for each compact subset $K \subset \Omega$ and each multi-index $\alpha \in {\bf N} _ { 0 } ^ { n }$ there is an $N &gt; 0$ such that the supremum of $| \partial ^ { \alpha } u _ { \varepsilon } ( x ) |$ over $x \in K$ is of order $O ( \varepsilon ^ { - N } )$ as $\varepsilon \rightarrow 0 \}$. Let $\mathcal{N} = \{ ( u _ { \varepsilon } ) _ { \varepsilon &gt; 0 } \in \mathcal{E} _ { M }$: for each compact subset $K \subset \Omega$, each multi-index $\alpha \in {\bf N} _ { 0 } ^ { n }$ and each $q \geq 0$, the supremum of $| \partial ^ { \alpha } u _ { \varepsilon } ( x ) |$ over $x \in K$ is of order $O ( \varepsilon ^ { q } )$ as $\varepsilon \rightarrow 0 \}$. Then $\mathcal{G} ( \Omega ) = \mathcal{E} _ { M } / \mathcal{N}$ is one of the versions of the algebras of J.F. Colombeau [[#References|[a1]]] (cf. also [[Colombeau generalized function algebras|Colombeau generalized function algebras]]). It is distinguished by the fact that the imbedding of $\mathcal{D} ^ { \prime } ( \Omega )$ gives $\mathcal{C} ^ { \infty } ( \Omega )$ as a faithful subalgebra.
 +
 
 +
5) Let $\mathcal{B} = ( \mathcal{C} ^ { \infty } ( \Omega ) ) ^ { \mathbf{N} }$, $\mathcal{I} _ { \text{nd} } = \{ ( u _{j} )_{ j \in \mathbf{N}}$: there is a closed, nowhere-dense subset $\Gamma \subset \Omega$ such that for all $x \in \Omega \backslash \Gamma$ there are a $j _0$ and a neighbourhood $V \subset \Omega \backslash \Gamma$ of $x$ such that $u _ { j } | _ { V } \equiv 0$ for $j \geq j_0 \}$. This is the nowhere dense ideal introduced by E.E. Rosinger [[#References|[a9]]] (cf. also [[Rosinger nowhere-dense generalized function algebra|Rosinger nowhere-dense generalized function algebra]]). The algebra $\mathcal{R} _ { \text{nd} } ( \Omega ) = \mathcal{B} / \mathcal{I} _ { \text{nd} }$ contains the algebra $C _ { \text{nd} } ^ { \infty } ( \Omega )$ of smooth functions defined off some nowhere-dense set as a subalgebra. Since <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003091.png"/>, the imbedding of $\mathcal{D} ^ { \prime } ( \Omega )$ cannot be done by convolution, but uses an algebraic basis.
 +
 
 +
There are many variations on this theme, different sets $\Lambda$, different spaces $\mathcal{V}$. The algebras can be defined on smooth manifolds as well. Usually, further operations can be applied to the elements of these algebras: superposition with non-linear mappings, restriction to submanifolds, pointwise evaluation (with values in the corresponding ring of constants).
  
 
The algebras offer a general framework for studying all problems involving non-linear operations, differentiation, and distributional or otherwise non-smooth data and coefficients. Applications include non-linear partial differential equations, stochastic partial differential equations, Lie symmetry transformations, distributional metrics in general relativity, quantum field theory. For a survey of current applications, see [[#References|[a4]]].
 
The algebras offer a general framework for studying all problems involving non-linear operations, differentiation, and distributional or otherwise non-smooth data and coefficients. Applications include non-linear partial differential equations, stochastic partial differential equations, Lie symmetry transformations, distributional metrics in general relativity, quantum field theory. For a survey of current applications, see [[#References|[a4]]].
  
A second approach is based on the algebras constructed by V.K. Ivanov [[#References|[a5]]] by means of analytic or harmonic regularization of homogeneous distributions and on the weak asymptotic expansions of V.P. Maslov (see e. g. [[#References|[a7]]]). A simple, specific example is given by the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003095.png" /> of distributions spanned by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003096.png" /> in one dimension, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003097.png" /> denotes the principal value distribution and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003098.png" /> the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g13003099.png" />th derivative of the Dirac measure (cf. also [[Generalized function|Generalized function]]). Their harmonic regularizations generate a function algebra <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g130030100.png" /> of smooth functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g130030101.png" /> defined on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g130030102.png" />. Each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g130030103.png" /> has a unique weak asymptotic expansion of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g130030104.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g130030105.png" /> with coefficients <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g130030106.png" /> in the original space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g130030107.png" />; the summation starts at some, possibly negative, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g130030108.png" />. The approach was extended [[#References|[a2]]] to the class of associated homogeneous distributions. This way the structure of an algebra may be introduced on certain subspaces of the space of asymptotic series with distribution coefficients. As an application, asymptotic solutions to non-linear partial differential equations can be constructed by direct computation with the asymptotic series.
+
A second approach is based on the algebras constructed by V.K. Ivanov [[#References|[a5]]] by means of analytic or harmonic regularization of homogeneous distributions and on the weak asymptotic expansions of V.P. Maslov (see e. g. [[#References|[a7]]]). A simple, specific example is given by the space $h$ of distributions spanned by $\{ x ^ { i } , \text { vp } 1 / x ^ { j } , \delta ^ { ( k ) } ( x ) : i , j , k \in {\bf N} _ { 0 } \}$ in one dimension, where $ \operatorname{vp} ( . )$ denotes the principal value distribution and $\delta ^ { ( k ) } ( . )$ the $k$th derivative of the Dirac measure (cf. also [[Generalized function|Generalized function]]). Their harmonic regularizations generate a function algebra $h ^ { * }$ of smooth functions $f ^ { * } ( x , \varepsilon )$ defined on $( x , \varepsilon ) \in \mathbf{R} \times ( 0 , \infty )$. Each $f ^ { * } ( x , \varepsilon )$ has a unique weak asymptotic expansion of the form $\sum _ { j = m } ^ { \infty } f _ { j } ( x ) \varepsilon ^ { j }$ as $\varepsilon \rightarrow 0$ with coefficients $f _ { j } ( x )$ in the original space $h$; the summation starts at some, possibly negative, $m \in \bf Z$. The approach was extended [[#References|[a2]]] to the class of associated homogeneous distributions. This way the structure of an algebra may be introduced on certain subspaces of the space of asymptotic series with distribution coefficients. As an application, asymptotic solutions to non-linear partial differential equations can be constructed by direct computation with the asymptotic series.
  
 
A relation with the previous construction of generalized function algebras is obtained by observing that harmonic regularization amounts to convolution with the kernel
 
A relation with the previous construction of generalized function algebras is obtained by observing that harmonic regularization amounts to convolution with the kernel
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/g/g130/g130030/g130030109.png" /></td> </tr></table>
+
\begin{equation*} \tau _ { \varepsilon } ( x ) = \frac { \varepsilon } { \pi } ( x ^ { 2 } + \varepsilon ^ { 2 } ) ^ { - 1 }. \end{equation*}
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J.F. Colombeau, "New generalized functions and multiplication of distributions" , North-Holland (1984) {{MR|0738781}} {{ZBL|0532.46019}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> V.G. Danilov, V.P. Maslov, V.M. Shelkovich, "Algebras of singularities of singular solutions to first-order quasilinear strictly hyperbolic systems" ''Theoret. Math. Phys.'' , '''114''' : 1 (1998) pp. 3–55 {{MR|1756560}} {{ZBL|}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> Yu.V. Egorov, "A contribution to the theory of generalized functions" ''Russian Math. Surveys'' , '''45''' : 5 (1990) pp. 1–49 {{MR|}} {{ZBL|0754.46034}} </TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> "Nonlinear theory of generalized functions" M. Grosser (ed.) G. Hörmann (ed.) M. Kunzinger (ed.) M. Oberguggenberger (ed.) , Chapman and Hall/CRC (1999) {{MR|1699842}} {{ZBL|0918.00026}} </TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> V.K. Ivanov, "An associative algebra of the simplest generalized functions" ''Sib. Math. J.'' , '''20''' (1980) pp. 509–516</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> H. König, "Multiplikation von Distributionen I" ''Math. Ann.'' , '''128''' (1955) pp. 420–452 {{MR|0068745}} {{ZBL|0064.11303}} </TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> V.P. Maslov, G.A. Omel'yanov, "Asymptotic soliton-form solutions of equations with small dispersion" ''Russian Math. Surveys'' , '''36''' : 3 (1981) pp. 73–149 {{MR|}} {{ZBL|0494.35080}} </TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top"> A. Robinson, "Non-standard analysis" , North-Holland (1966) {{MR|0205854}} {{ZBL|0151.00803}} </TD></TR><TR><TD valign="top">[a9]</TD> <TD valign="top"> E.E. Rosinger, "Nonlinear partial differential equations. Sequential and weak solutions" , North-Holland (1980) {{MR|0590891}} {{ZBL|0447.35001}} </TD></TR><TR><TD valign="top">[a10]</TD> <TD valign="top"> C. Schmieden, D. Laugwitz, "Eine Erweiterung der Infinitesimalrechnung" ''Math. Z.'' , '''69''' (1958) pp. 1–39 {{MR|0095906}} {{ZBL|0082.04203}} </TD></TR></table>
+
<table><tr><td valign="top">[a1]</td> <td valign="top"> J.F. Colombeau, "New generalized functions and multiplication of distributions" , North-Holland (1984) {{MR|0738781}} {{ZBL|0532.46019}} </td></tr><tr><td valign="top">[a2]</td> <td valign="top"> V.G. Danilov, V.P. Maslov, V.M. Shelkovich, "Algebras of singularities of singular solutions to first-order quasilinear strictly hyperbolic systems" ''Theoret. Math. Phys.'' , '''114''' : 1 (1998) pp. 3–55 {{MR|1756560}} {{ZBL|}} </td></tr><tr><td valign="top">[a3]</td> <td valign="top"> Yu.V. Egorov, "A contribution to the theory of generalized functions" ''Russian Math. Surveys'' , '''45''' : 5 (1990) pp. 1–49 {{MR|}} {{ZBL|0754.46034}} </td></tr><tr><td valign="top">[a4]</td> <td valign="top"> "Nonlinear theory of generalized functions" M. Grosser (ed.) G. Hörmann (ed.) M. Kunzinger (ed.) M. Oberguggenberger (ed.) , Chapman and Hall/CRC (1999) {{MR|1699842}} {{ZBL|0918.00026}} </td></tr><tr><td valign="top">[a5]</td> <td valign="top"> V.K. Ivanov, "An associative algebra of the simplest generalized functions" ''Sib. Math. J.'' , '''20''' (1980) pp. 509–516</td></tr><tr><td valign="top">[a6]</td> <td valign="top"> H. König, "Multiplikation von Distributionen I" ''Math. Ann.'' , '''128''' (1955) pp. 420–452 {{MR|0068745}} {{ZBL|0064.11303}} </td></tr><tr><td valign="top">[a7]</td> <td valign="top"> V.P. Maslov, G.A. Omel'yanov, "Asymptotic soliton-form solutions of equations with small dispersion" ''Russian Math. Surveys'' , '''36''' : 3 (1981) pp. 73–149 {{MR|}} {{ZBL|0494.35080}} </td></tr><tr><td valign="top">[a8]</td> <td valign="top"> A. Robinson, "Non-standard analysis" , North-Holland (1966) {{MR|0205854}} {{ZBL|0151.00803}} </td></tr><tr><td valign="top">[a9]</td> <td valign="top"> E.E. Rosinger, "Nonlinear partial differential equations. Sequential and weak solutions" , North-Holland (1980) {{MR|0590891}} {{ZBL|0447.35001}} </td></tr><tr><td valign="top">[a10]</td> <td valign="top"> C. Schmieden, D. Laugwitz, "Eine Erweiterung der Infinitesimalrechnung" ''Math. Z.'' , '''69''' (1958) pp. 1–39 {{MR|0095906}} {{ZBL|0082.04203}} </td></tr></table>

Revision as of 16:46, 1 July 2020

Let $\Omega$ be an open subset of ${\bf R} ^ { n }$. A generalized function algebra is an associative, commutative differential algebra $\mathcal{A} ( \Omega )$ containing the space of distributions $\mathcal{D} ^ { \prime } ( \Omega )$ or other distribution spaces as a linear subspace (cf. also Generalized functions, space of). An early construction of a non-associative, non-commutative algebra was given by H. König [a6]. The main current (2000) direction has been to construct associative, commutative algebras as reduced powers $\nu ^ { \Lambda } / \mathcal{I}$ of classical function spaces $\mathcal{V}$. A further approach uses analytic continuation and asymptotic series of distributions.

To describe the principles, consider the space $\mathcal{V} = \mathcal{C} ^ { \infty } ( \Omega )$ of infinitely differentiable functions on $\Omega$ (cf. also Differentiable function). Let $\Lambda$ be an infinite index set, $\mathcal{B}$ a differential subalgebra of $\mathcal{V} ^ { \Lambda }$ and $\cal I$ a differential ideal in $\mathcal{B}$. The generalized function algebra $\mathcal{A} ( \Omega )$ is defined as the factor algebra $\mathcal{A} ( \Omega ) = \mathcal{B} / \mathcal{I}$. Assuming that $\Lambda$ is a directed set, let $( \varphi _ { \lambda } ) _ { \lambda \in \Lambda }$ be a net in $\mathcal{C} ^ { \infty } ( \mathbf{R} ^ { n } )$ (cf. also Net (directed set)) converging to the Dirac measure in $\mathcal{D} ^ { \prime } ( \mathbf{R} ^ { n } )$ (cf. also Generalized functions, space of). Any compactly supported distribution $w \in \mathcal{E} ^ { \prime } ( \Omega )$ can be imbedded in $\mathcal{V} ^ { \Lambda }$ by convolution (cf. also Generalized function): $w \mapsto ( w ^ { * } \varphi _ { \lambda } ) _ { \lambda \in \Lambda }$. Appropriate conditions on $\mathcal{B}$ and $\cal I$ will guarantee that this extends to an imbedding of ${\cal E} ^ { \prime } ( \Omega )$ into $\mathcal{A} ( \Omega )$. An imbedding of $\mathcal{D} ^ { \prime } ( \Omega )$ is obtained, provided the family $\{ \mathcal{A} ( \Omega ) : \Omega \text { open } \}$ forms a sheaf of differential algebras on ${\bf R} ^ { n }$ (the restriction mappings are defined componentwise on representatives). This imbedding preserves the derivatives of distributions. It follows from the impossibility result of L. Schwartz (see Multiplication of distributions) that it cannot retain the pointwise product of continuous functions at the same time. If $\cal I$ is contained in the subspace $\mathcal Z$ of $\mathcal{V} ^ { \Lambda }$ comprised by those nets which converge weakly to zero, then an equivalence relation $u \sim v$ can be defined on $\mathcal{A} ( \Omega )$ by requiring that $( u _ { \lambda } - v _ { \lambda } ) _ { \lambda \in \Lambda } \in \mathcal{Z}$ for representatives $( u _ { \lambda } ) _ { \lambda \in \Lambda }$ and $( v _ { \lambda } ) _ { \lambda \in \Lambda }$ of $u$ and $v$. The pointwise product of continuous functions (as well as all products obtained by multiplication of distributions) are retained up to this equivalence relation. A list of typical examples of generalized function algebras follows:

1) $\mathcal{B} = ( \mathcal{C} ^ { \infty } ( \Omega ) ) ^ { \mathbf{N} }$, ${\cal I} _ { 0 } = \{ ( u _ { j } ) _ { j \in \bf N }$: there is $j _0$ such that $u _ { j } \equiv 0$ for $j \geq j_0 \}$. The algebra $\mathcal{A} ( \Omega ) = \mathcal{B} / \mathcal{I} _ { 0 }$ was introduced by C. Schmieden and D. Laugwitz [a10] in their foundations of infinitesimal analysis.

2) Let $\mathcal U$ be a free ultrafilter on the infinite set $\Lambda$ and define ${\cal I _ { U } }= \{ ( u _ { \lambda } ) _ { \lambda \in \Lambda }$: the set of indices $\{ \lambda : u _ { \lambda } \equiv 0 \}$ belongs to ${\cal U} \}$, let $\mathcal{B} = ( \mathcal{C} ^ { \infty } ( \Omega ) ) ^ { \Lambda }$. Then $\square ^ { * } \mathcal{C} ^ { \infty } ( \Omega ) = \mathcal{B} / \mathcal{I}_{ \mathcal{U}}$ is an instance of the ultrapower construction of the algebra of internal smooth functions of non-standard analysis (A. Robinson [a8]).

Neither 1) nor 2) provide sheaves on ${\bf R} ^ { n }$. To get a sheaf, localization must be introduced:

3) Let $\mathcal{B} = ( \mathcal{C} ^ { \infty } ( \Omega ) ) ^ { \mathbf{N} }$, ${\cal I} _ { 0 , \operatorname{loc} } = \{ ( u _ { j } ) _ { j \in \bf N }$: for each compact subset $K \subset \Omega$ there is a $j _0$ such that $u _ { j } | _ { K } \equiv 0$ for $j \geq j_0 \}$. The algebra $\mathcal{A}( \Omega ) = \mathcal{B} / \mathcal{I}_{ 0 , \operatorname { loc }}$ was introduced by Yu.V. Egorov [a3] (cf. also Egorov generalized function algebra).

4) Let $\mathcal{E} _ { M } = \{ ( u _ { \varepsilon } ) _ { \varepsilon > 0 } \in \mathcal{C} ^ { \infty } ( \Omega ) ^ { ( 0 , \infty ) }$: for each compact subset $K \subset \Omega$ and each multi-index $\alpha \in {\bf N} _ { 0 } ^ { n }$ there is an $N > 0$ such that the supremum of $| \partial ^ { \alpha } u _ { \varepsilon } ( x ) |$ over $x \in K$ is of order $O ( \varepsilon ^ { - N } )$ as $\varepsilon \rightarrow 0 \}$. Let $\mathcal{N} = \{ ( u _ { \varepsilon } ) _ { \varepsilon > 0 } \in \mathcal{E} _ { M }$: for each compact subset $K \subset \Omega$, each multi-index $\alpha \in {\bf N} _ { 0 } ^ { n }$ and each $q \geq 0$, the supremum of $| \partial ^ { \alpha } u _ { \varepsilon } ( x ) |$ over $x \in K$ is of order $O ( \varepsilon ^ { q } )$ as $\varepsilon \rightarrow 0 \}$. Then $\mathcal{G} ( \Omega ) = \mathcal{E} _ { M } / \mathcal{N}$ is one of the versions of the algebras of J.F. Colombeau [a1] (cf. also Colombeau generalized function algebras). It is distinguished by the fact that the imbedding of $\mathcal{D} ^ { \prime } ( \Omega )$ gives $\mathcal{C} ^ { \infty } ( \Omega )$ as a faithful subalgebra.

5) Let $\mathcal{B} = ( \mathcal{C} ^ { \infty } ( \Omega ) ) ^ { \mathbf{N} }$, $\mathcal{I} _ { \text{nd} } = \{ ( u _{j} )_{ j \in \mathbf{N}}$: there is a closed, nowhere-dense subset $\Gamma \subset \Omega$ such that for all $x \in \Omega \backslash \Gamma$ there are a $j _0$ and a neighbourhood $V \subset \Omega \backslash \Gamma$ of $x$ such that $u _ { j } | _ { V } \equiv 0$ for $j \geq j_0 \}$. This is the nowhere dense ideal introduced by E.E. Rosinger [a9] (cf. also Rosinger nowhere-dense generalized function algebra). The algebra $\mathcal{R} _ { \text{nd} } ( \Omega ) = \mathcal{B} / \mathcal{I} _ { \text{nd} }$ contains the algebra $C _ { \text{nd} } ^ { \infty } ( \Omega )$ of smooth functions defined off some nowhere-dense set as a subalgebra. Since , the imbedding of $\mathcal{D} ^ { \prime } ( \Omega )$ cannot be done by convolution, but uses an algebraic basis.

There are many variations on this theme, different sets $\Lambda$, different spaces $\mathcal{V}$. The algebras can be defined on smooth manifolds as well. Usually, further operations can be applied to the elements of these algebras: superposition with non-linear mappings, restriction to submanifolds, pointwise evaluation (with values in the corresponding ring of constants).

The algebras offer a general framework for studying all problems involving non-linear operations, differentiation, and distributional or otherwise non-smooth data and coefficients. Applications include non-linear partial differential equations, stochastic partial differential equations, Lie symmetry transformations, distributional metrics in general relativity, quantum field theory. For a survey of current applications, see [a4].

A second approach is based on the algebras constructed by V.K. Ivanov [a5] by means of analytic or harmonic regularization of homogeneous distributions and on the weak asymptotic expansions of V.P. Maslov (see e. g. [a7]). A simple, specific example is given by the space $h$ of distributions spanned by $\{ x ^ { i } , \text { vp } 1 / x ^ { j } , \delta ^ { ( k ) } ( x ) : i , j , k \in {\bf N} _ { 0 } \}$ in one dimension, where $ \operatorname{vp} ( . )$ denotes the principal value distribution and $\delta ^ { ( k ) } ( . )$ the $k$th derivative of the Dirac measure (cf. also Generalized function). Their harmonic regularizations generate a function algebra $h ^ { * }$ of smooth functions $f ^ { * } ( x , \varepsilon )$ defined on $( x , \varepsilon ) \in \mathbf{R} \times ( 0 , \infty )$. Each $f ^ { * } ( x , \varepsilon )$ has a unique weak asymptotic expansion of the form $\sum _ { j = m } ^ { \infty } f _ { j } ( x ) \varepsilon ^ { j }$ as $\varepsilon \rightarrow 0$ with coefficients $f _ { j } ( x )$ in the original space $h$; the summation starts at some, possibly negative, $m \in \bf Z$. The approach was extended [a2] to the class of associated homogeneous distributions. This way the structure of an algebra may be introduced on certain subspaces of the space of asymptotic series with distribution coefficients. As an application, asymptotic solutions to non-linear partial differential equations can be constructed by direct computation with the asymptotic series.

A relation with the previous construction of generalized function algebras is obtained by observing that harmonic regularization amounts to convolution with the kernel

\begin{equation*} \tau _ { \varepsilon } ( x ) = \frac { \varepsilon } { \pi } ( x ^ { 2 } + \varepsilon ^ { 2 } ) ^ { - 1 }. \end{equation*}

References

[a1] J.F. Colombeau, "New generalized functions and multiplication of distributions" , North-Holland (1984) MR0738781 Zbl 0532.46019
[a2] V.G. Danilov, V.P. Maslov, V.M. Shelkovich, "Algebras of singularities of singular solutions to first-order quasilinear strictly hyperbolic systems" Theoret. Math. Phys. , 114 : 1 (1998) pp. 3–55 MR1756560
[a3] Yu.V. Egorov, "A contribution to the theory of generalized functions" Russian Math. Surveys , 45 : 5 (1990) pp. 1–49 Zbl 0754.46034
[a4] "Nonlinear theory of generalized functions" M. Grosser (ed.) G. Hörmann (ed.) M. Kunzinger (ed.) M. Oberguggenberger (ed.) , Chapman and Hall/CRC (1999) MR1699842 Zbl 0918.00026
[a5] V.K. Ivanov, "An associative algebra of the simplest generalized functions" Sib. Math. J. , 20 (1980) pp. 509–516
[a6] H. König, "Multiplikation von Distributionen I" Math. Ann. , 128 (1955) pp. 420–452 MR0068745 Zbl 0064.11303
[a7] V.P. Maslov, G.A. Omel'yanov, "Asymptotic soliton-form solutions of equations with small dispersion" Russian Math. Surveys , 36 : 3 (1981) pp. 73–149 Zbl 0494.35080
[a8] A. Robinson, "Non-standard analysis" , North-Holland (1966) MR0205854 Zbl 0151.00803
[a9] E.E. Rosinger, "Nonlinear partial differential equations. Sequential and weak solutions" , North-Holland (1980) MR0590891 Zbl 0447.35001
[a10] C. Schmieden, D. Laugwitz, "Eine Erweiterung der Infinitesimalrechnung" Math. Z. , 69 (1958) pp. 1–39 MR0095906 Zbl 0082.04203
How to Cite This Entry:
Generalized function algebras. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Generalized_function_algebras&oldid=24451
This article was adapted from an original article by Michael Oberguggenberger (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article