Namespaces
Variants
Actions

Difference between revisions of "Solèr theorem"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (AUTOMATIC EDIT (latexlist): Replaced 76 formulas out of 76 by TEX code with an average confidence of 2.0 and a minimal confidence of 2.0.)
 
(2 intermediate revisions by one other user not shown)
Line 1: Line 1:
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s1201801.png" /> be a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s1201802.png" />-field, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s1201803.png" /> a left [[Vector space|vector space]] over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s1201804.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s1201805.png" /> an orthomodular form on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s1201806.png" /> that has an infinite orthonormal sequence (see below for definitions). Then Solèr's theorem states that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s1201807.png" /> must be <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s1201808.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s1201809.png" />, or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018010.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018011.png" /> is the corresponding [[Hilbert space|Hilbert space]] [[#References|[a7]]].
+
<!--This article has been texified automatically. Since there was no Nroff source code for this article,
 +
the semi-automatic procedure described at https://encyclopediaofmath.org/wiki/User:Maximilian_Janisch/latexlist
 +
was used.
 +
If the TeX and formula formatting is correct, please remove this message and the {{TEX|semi-auto}} category.
 +
 
 +
Out of 76 formulas, 76 were replaced by TEX code.-->
 +
 
 +
{{TEX|semi-auto}}{{TEX|done}}
 +
Let $\mathcal{K}$ be a $*$-field, $E$ a left [[Vector space|vector space]] over $\mathcal{K}$, and $\langle \, .\, ,\,  . \, \rangle$ an orthomodular form on $E$ that has an infinite orthonormal sequence (see below for definitions). Then Solèr's theorem states that $\mathcal{K}$ must be $\mathbf{R}$, $\mathbf{C}$, or $\bf H$, and $\{ E , \mathcal{K} , \langle \cdot , \cdot \rangle \}$ is the corresponding [[Hilbert space|Hilbert space]] [[#References|[a7]]].
  
 
==Definitions.==
 
==Definitions.==
A <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018013.png" />-field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018014.png" /> is a (commutative or non-commutative) [[Field|field]] with involution. (An involution is a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018015.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018016.png" /> onto itself that satisfies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018017.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018018.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018019.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018020.png" />.)
+
A $*$-field $\mathcal{K}$ is a (commutative or non-commutative) [[Field|field]] with involution. (An involution is a mapping $\alpha \mapsto \alpha ^ { * }$ of $\mathcal{K}$ onto itself that satisfies $( \alpha + \beta ) ^ { * } = \alpha ^ { * } + \beta ^ { * }$, $( \alpha \beta ) ^ { * } = \beta ^ { * } \alpha ^ { * }$, and $\alpha ^ { * * } = \alpha$ for all $\alpha , \beta \in \cal{K}$.)
  
The set of real numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018021.png" /> with the identity involution, the set of complex numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018022.png" /> with complex conjugation as involution, and the set of real quaternions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018023.png" /> with the usual quaternionic conjugation as involution are the three classical examples of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018024.png" />-fields.
+
The set of real numbers $\mathbf{R}$ with the identity involution, the set of complex numbers $\mathbf{C}$ with complex conjugation as involution, and the set of real quaternions $\bf H$ with the usual quaternionic conjugation as involution are the three classical examples of $*$-fields.
  
A Hermitian form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018025.png" /> on a left [[Vector space|vector space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018026.png" /> over a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018027.png" />-field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018028.png" /> is a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018029.png" /> that associates to every pair of vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018030.png" /> a scalar <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018031.png" /> in accordance with the following rules:
+
A Hermitian form $\langle \, .\, ,\,  . \, \rangle$ on a left [[Vector space|vector space]] $E$ over a $*$-field $\mathcal{K}$ is a mapping $E \times E \rightarrow \mathcal{K}$ that associates to every pair of vectors $x , y \in E$ a scalar $\langle x , y \rangle \in \mathcal{K}$ in accordance with the following rules:
  
i) it is linear in the first variable and conjugate linear with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018032.png" /> in the second variable (in short: it is conjugate bilinear);
+
i) it is linear in the first variable and conjugate linear with respect to $*$ in the second variable (in short: it is conjugate bilinear);
  
ii) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018033.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018034.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018035.png" /> implies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018036.png" /> (in short: it is regular);
+
ii) $\langle a , x \rangle = 0$ or $\langle x , a \rangle = 0$ for all $x \in E$ implies $a = 0$ (in short: it is regular);
  
iii) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018037.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018038.png" /> (the Hermitian property). Two vectors <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018039.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018040.png" /> in a Hermitian space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018041.png" /> are orthogonal when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018042.png" />. A sequence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018043.png" /> of non-zero vectors is called orthogonal when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018044.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018045.png" />; and it is called orthonormal when also <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018046.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018047.png" />.
+
iii) $\langle x , y \rangle ^ { * } = \langle y , x \rangle$ for all $x , y \in E$ (the Hermitian property). Two vectors $x$, $y$ in a Hermitian space $\{ E , \mathcal{K} , \langle \cdot , \cdot \rangle \}$ are orthogonal when $\langle x , y \rangle = 0$. A sequence $\{ e _ { i } : i = 1,2 , \ldots \}$ of non-zero vectors is called orthogonal when $\langle e _ { i } , e _ { j } \rangle = 0$ for $i \neq j$; and it is called orthonormal when also $\langle e _ { i } , e _ { i } \rangle = 1$, $i = 1,2 , \dots$.
  
Given a non-empty subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018048.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018049.png" />, the symbol <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018050.png" /> stands for the set of those elements in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018051.png" /> that are orthogonal to every element of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018052.png" />:
+
Given a non-empty subset $S$ of $E$, the symbol $S ^ { \perp }$ stands for the set of those elements in $E$ that are orthogonal to every element of $S$:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018053.png" /></td> </tr></table>
+
\begin{equation*} S ^ { \perp } = \{ x \in E : \langle x , s \rangle = 0 \text { for all } s \in S \}. \end{equation*}
  
A subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018054.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018055.png" /> is called closed when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018056.png" />. A Hermitian space is orthomodular when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018057.png" /> for every closed subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018058.png" />; in symbols: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018059.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018060.png" /> imply <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018061.png" />.
+
A subspace $M$ of $E$ is called closed when $M = M ^ { \perp \perp }$. A Hermitian space is orthomodular when $M + M ^ { \perp } = E$ for every closed subspace $M$; in symbols: $\emptyset \neq M \subseteq E$ and $M = M ^ { \perp \perp }$ imply $M + M ^ { \perp } = E$.
  
A Hilbert space is a Hermitian space over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018062.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018063.png" />, or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018064.png" /> whose form is positive definite, i.e., <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018065.png" /> implies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018066.png" />, and which is complete with respect to the metric <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018067.png" /> derived from that form. The well-known projection theorem asserts that a Hilbert space is orthomodular.
+
A Hilbert space is a Hermitian space over $\mathbf{R}$, $\mathbf{C}$, or $\bf H$ whose form is positive definite, i.e., $x \neq 0$ implies $\langle x , x \rangle &gt; 0$, and which is complete with respect to the metric $\rho ( x , y ) = \langle x - y , x - y \rangle ^ { 1 / 2 }$ derived from that form. The well-known projection theorem asserts that a Hilbert space is orthomodular.
  
 
==History.==
 
==History.==
 
There are two conclusions in Solèr's theorem:
 
There are two conclusions in Solèr's theorem:
  
1) the underlying <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018068.png" />-field is <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018069.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018070.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018071.png" />; and
+
1) the underlying $*$-field is $\mathbf{R}$, $\mathbf{C}$ or $\bf H$; and
  
2) the resulting space is metrically complete. The first conclusion, which materializes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018072.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018073.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018074.png" /> out of all possible <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018075.png" />-fields, is Solèr's contribution. Of the two conclusions, the first is by far the most difficult to establish, the most striking in its appearance, and the most far-reaching in its consequences. The metric completeness was actually surmised earlier by C. Piron [[#References|[a5]]], then proved by I. Amemiya and H. Araki [[#References|[a1]]]. Keller's example of a  "non-classical"  Hilbert space shows that Solèr's result no longer holds if only orthomodularity is assumed [[#References|[a3]]]. Prior to Solèr's definitive result, a vital contribution was made by W.J. Wilbur [[#References|[a8]]].
+
2) the resulting space is metrically complete. The first conclusion, which materializes $\mathbf{R}$, $\mathbf{C}$, and $\bf H$ out of all possible $*$-fields, is Solèr's contribution. Of the two conclusions, the first is by far the most difficult to establish, the most striking in its appearance, and the most far-reaching in its consequences. The metric completeness was actually surmised earlier by C. Piron [[#References|[a5]]], then proved by I. Amemiya and H. Araki [[#References|[a1]]]. Keller's example of a  "non-classical"  Hilbert space shows that Solèr's result no longer holds if only orthomodularity is assumed [[#References|[a3]]]. Prior to Solèr's definitive result, a vital contribution was made by W.J. Wilbur [[#References|[a8]]].
  
M.P. Solèr is a student of the late Professor H. Gross. This result is her 1994 doctoral thesis at the University of Zürich. The volume [[#References|[a4]]] is a paean to the legacy of Gross. Reference [[#References|[a4]]], Article by Keller–Künzi–Solèr, discusses the orthomodular axiom in depth, and contains a detailed proof of Solèr's theorem in the case where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018076.png" /> is commutative with the identity involution. Another proof of Solèr's theorem in the general case has been provided by A. Prestel [[#References|[a6]]]. Solèr's theorem has applications to Baer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s120/s120180/s12018078.png" />-rings, infinite-dimensional projective geometries, orthomodular lattices, and quantum logic [[#References|[a2]]].
+
M.P. Solèr is a student of the late Professor H. Gross. This result is her 1994 doctoral thesis at the University of Zürich. The volume [[#References|[a4]]] is a paean to the legacy of Gross. Reference [[#References|[a4]]], Article by Keller–Künzi–Solèr, discusses the orthomodular axiom in depth, and contains a detailed proof of Solèr's theorem in the case where $\mathcal{K}$ is commutative with the identity involution. Another proof of Solèr's theorem in the general case has been provided by A. Prestel [[#References|[a6]]]. Solèr's theorem has applications to Baer $*$-rings, infinite-dimensional projective geometries, orthomodular lattices, and quantum logic [[#References|[a2]]].
  
 
====References====
 
====References====
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  I. Amemiya,  H. Araki,  "A remark on Piron's paper"  ''Publ. Res. Inst. Math. Sci.'' , '''A2'''  (1966/67)  pp. 423–427</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  S.S. Holland Jr.,  "Orthomodularity in infinite dimensions: a theorem of M. Solèr"  ''Bull. Amer. Math. Soc.'' , '''32'''  (1995)  pp. 205–234</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top">  H.A. Keller,  "Ein nicht-klassischer Hilbertscher Raum"  ''Math. Z.'' , '''172'''  (1980)  pp. 41–49</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top">  "Orthogonal geometry in infinite dimensional spaces"  H.A. Keller (ed.)  U.-M. Künzi (ed.)  M. Wild (ed.) , ''Bayreuth. Math. Schrift.'' , '''53'''  (1998)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top">  C. Piron,  "Axiomatique quantique"  ''Helv. Phys. Acta'' , '''37'''  (1964)  pp. 439–468</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top">  A. Prestel,  "On Solèr's characterization of Hilbert spaces"  ''Manuscripta Math.'' , '''86'''  (1995)  pp. 225–238</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top">  M.P. Solèr,  "Characterization of Hilbert spaces with orthomodular spaces"  ''Commun. Algebra'' , '''23'''  (1995)  pp. 219–243</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top">  W. John Wilbur,  "On characterizing the standard quantum logics"  ''Trans. Amer. Math. Soc.'' , '''233'''  (1977)  pp. 265–292</TD></TR></table>
+
<table><tr><td valign="top">[a1]</td> <td valign="top">  I. Amemiya,  H. Araki,  "A remark on Piron's paper"  ''Publ. Res. Inst. Math. Sci.'' , '''A2'''  (1966/67)  pp. 423–427</td></tr><tr><td valign="top">[a2]</td> <td valign="top">  S.S. Holland Jr.,  "Orthomodularity in infinite dimensions: a theorem of M. Solèr"  ''Bull. Amer. Math. Soc.'' , '''32'''  (1995)  pp. 205–234</td></tr><tr><td valign="top">[a3]</td> <td valign="top">  H.A. Keller,  "Ein nicht-klassischer Hilbertscher Raum"  ''Math. Z.'' , '''172'''  (1980)  pp. 41–49</td></tr><tr><td valign="top">[a4]</td> <td valign="top">  "Orthogonal geometry in infinite dimensional spaces"  H.A. Keller (ed.)  U.-M. Künzi (ed.)  M. Wild (ed.) , ''Bayreuth. Math. Schrift.'' , '''53'''  (1998)</td></tr><tr><td valign="top">[a5]</td> <td valign="top">  C. Piron,  "Axiomatique quantique"  ''Helv. Phys. Acta'' , '''37'''  (1964)  pp. 439–468</td></tr><tr><td valign="top">[a6]</td> <td valign="top">  A. Prestel,  "On Solèr's characterization of Hilbert spaces"  ''Manuscripta Math.'' , '''86'''  (1995)  pp. 225–238</td></tr><tr><td valign="top">[a7]</td> <td valign="top">  M.P. Solèr,  "Characterization of Hilbert spaces with orthomodular spaces"  ''Commun. Algebra'' , '''23'''  (1995)  pp. 219–243</td></tr><tr><td valign="top">[a8]</td> <td valign="top">  W. John Wilbur,  "On characterizing the standard quantum logics"  ''Trans. Amer. Math. Soc.'' , '''233'''  (1977)  pp. 265–292</td></tr></table>

Latest revision as of 15:30, 1 July 2020

Let $\mathcal{K}$ be a $*$-field, $E$ a left vector space over $\mathcal{K}$, and $\langle \, .\, ,\, . \, \rangle$ an orthomodular form on $E$ that has an infinite orthonormal sequence (see below for definitions). Then Solèr's theorem states that $\mathcal{K}$ must be $\mathbf{R}$, $\mathbf{C}$, or $\bf H$, and $\{ E , \mathcal{K} , \langle \cdot , \cdot \rangle \}$ is the corresponding Hilbert space [a7].

Definitions.

A $*$-field $\mathcal{K}$ is a (commutative or non-commutative) field with involution. (An involution is a mapping $\alpha \mapsto \alpha ^ { * }$ of $\mathcal{K}$ onto itself that satisfies $( \alpha + \beta ) ^ { * } = \alpha ^ { * } + \beta ^ { * }$, $( \alpha \beta ) ^ { * } = \beta ^ { * } \alpha ^ { * }$, and $\alpha ^ { * * } = \alpha$ for all $\alpha , \beta \in \cal{K}$.)

The set of real numbers $\mathbf{R}$ with the identity involution, the set of complex numbers $\mathbf{C}$ with complex conjugation as involution, and the set of real quaternions $\bf H$ with the usual quaternionic conjugation as involution are the three classical examples of $*$-fields.

A Hermitian form $\langle \, .\, ,\, . \, \rangle$ on a left vector space $E$ over a $*$-field $\mathcal{K}$ is a mapping $E \times E \rightarrow \mathcal{K}$ that associates to every pair of vectors $x , y \in E$ a scalar $\langle x , y \rangle \in \mathcal{K}$ in accordance with the following rules:

i) it is linear in the first variable and conjugate linear with respect to $*$ in the second variable (in short: it is conjugate bilinear);

ii) $\langle a , x \rangle = 0$ or $\langle x , a \rangle = 0$ for all $x \in E$ implies $a = 0$ (in short: it is regular);

iii) $\langle x , y \rangle ^ { * } = \langle y , x \rangle$ for all $x , y \in E$ (the Hermitian property). Two vectors $x$, $y$ in a Hermitian space $\{ E , \mathcal{K} , \langle \cdot , \cdot \rangle \}$ are orthogonal when $\langle x , y \rangle = 0$. A sequence $\{ e _ { i } : i = 1,2 , \ldots \}$ of non-zero vectors is called orthogonal when $\langle e _ { i } , e _ { j } \rangle = 0$ for $i \neq j$; and it is called orthonormal when also $\langle e _ { i } , e _ { i } \rangle = 1$, $i = 1,2 , \dots$.

Given a non-empty subset $S$ of $E$, the symbol $S ^ { \perp }$ stands for the set of those elements in $E$ that are orthogonal to every element of $S$:

\begin{equation*} S ^ { \perp } = \{ x \in E : \langle x , s \rangle = 0 \text { for all } s \in S \}. \end{equation*}

A subspace $M$ of $E$ is called closed when $M = M ^ { \perp \perp }$. A Hermitian space is orthomodular when $M + M ^ { \perp } = E$ for every closed subspace $M$; in symbols: $\emptyset \neq M \subseteq E$ and $M = M ^ { \perp \perp }$ imply $M + M ^ { \perp } = E$.

A Hilbert space is a Hermitian space over $\mathbf{R}$, $\mathbf{C}$, or $\bf H$ whose form is positive definite, i.e., $x \neq 0$ implies $\langle x , x \rangle > 0$, and which is complete with respect to the metric $\rho ( x , y ) = \langle x - y , x - y \rangle ^ { 1 / 2 }$ derived from that form. The well-known projection theorem asserts that a Hilbert space is orthomodular.

History.

There are two conclusions in Solèr's theorem:

1) the underlying $*$-field is $\mathbf{R}$, $\mathbf{C}$ or $\bf H$; and

2) the resulting space is metrically complete. The first conclusion, which materializes $\mathbf{R}$, $\mathbf{C}$, and $\bf H$ out of all possible $*$-fields, is Solèr's contribution. Of the two conclusions, the first is by far the most difficult to establish, the most striking in its appearance, and the most far-reaching in its consequences. The metric completeness was actually surmised earlier by C. Piron [a5], then proved by I. Amemiya and H. Araki [a1]. Keller's example of a "non-classical" Hilbert space shows that Solèr's result no longer holds if only orthomodularity is assumed [a3]. Prior to Solèr's definitive result, a vital contribution was made by W.J. Wilbur [a8].

M.P. Solèr is a student of the late Professor H. Gross. This result is her 1994 doctoral thesis at the University of Zürich. The volume [a4] is a paean to the legacy of Gross. Reference [a4], Article by Keller–Künzi–Solèr, discusses the orthomodular axiom in depth, and contains a detailed proof of Solèr's theorem in the case where $\mathcal{K}$ is commutative with the identity involution. Another proof of Solèr's theorem in the general case has been provided by A. Prestel [a6]. Solèr's theorem has applications to Baer $*$-rings, infinite-dimensional projective geometries, orthomodular lattices, and quantum logic [a2].

References

[a1] I. Amemiya, H. Araki, "A remark on Piron's paper" Publ. Res. Inst. Math. Sci. , A2 (1966/67) pp. 423–427
[a2] S.S. Holland Jr., "Orthomodularity in infinite dimensions: a theorem of M. Solèr" Bull. Amer. Math. Soc. , 32 (1995) pp. 205–234
[a3] H.A. Keller, "Ein nicht-klassischer Hilbertscher Raum" Math. Z. , 172 (1980) pp. 41–49
[a4] "Orthogonal geometry in infinite dimensional spaces" H.A. Keller (ed.) U.-M. Künzi (ed.) M. Wild (ed.) , Bayreuth. Math. Schrift. , 53 (1998)
[a5] C. Piron, "Axiomatique quantique" Helv. Phys. Acta , 37 (1964) pp. 439–468
[a6] A. Prestel, "On Solèr's characterization of Hilbert spaces" Manuscripta Math. , 86 (1995) pp. 225–238
[a7] M.P. Solèr, "Characterization of Hilbert spaces with orthomodular spaces" Commun. Algebra , 23 (1995) pp. 219–243
[a8] W. John Wilbur, "On characterizing the standard quantum logics" Trans. Amer. Math. Soc. , 233 (1977) pp. 265–292
How to Cite This Entry:
Solèr theorem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Sol%C3%A8r_theorem&oldid=15459
This article was adapted from an original article by S.S. Holland, Jr. (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article