Difference between revisions of "Strip method (integral equations)"
(Importing text file) |
m (fix tex) |
||
(3 intermediate revisions by one other user not shown) | |||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | s0905101.png | ||
+ | $#A+1 = 19 n = 0 | ||
+ | $#C+1 = 19 : ~/encyclopedia/old_files/data/S090/S.0900510 Strip method (integral equations) | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
A method for the approximate solution of one-dimensional Fredholm integral equations of the second kind (cf. also [[Fredholm equation|Fredholm equation]]; [[Fredholm equation, numerical methods|Fredholm equation, numerical methods]]), based on replacing the kernel in a special way by a degenerate kernel, evaluating the resolvent of the degenerate equation and then improving the approximate solution through the use of a rapidly-convergent iterative algorithm. | A method for the approximate solution of one-dimensional Fredholm integral equations of the second kind (cf. also [[Fredholm equation|Fredholm equation]]; [[Fredholm equation, numerical methods|Fredholm equation, numerical methods]]), based on replacing the kernel in a special way by a degenerate kernel, evaluating the resolvent of the degenerate equation and then improving the approximate solution through the use of a rapidly-convergent iterative algorithm. | ||
Let the original integral equation be written as | Let the original integral equation be written as | ||
− | + | $$ \tag{1 } | |
+ | \phi ( x) - \lambda \int\limits _ { a } ^ { b } K ( x , s ) \phi ( s) d s = f ( x) . | ||
+ | $$ | ||
To construct the degenerate kernel, divide the square | To construct the degenerate kernel, divide the square | ||
− | + | $$ | |
+ | \{ a \leq x \leq b , a \leq s \leq b \} | ||
+ | $$ | ||
− | into | + | into $ N $ |
+ | strips | ||
− | + | $$ | |
+ | \left \{ b- | ||
+ | \frac{a}{N} | ||
+ | i \leq x \leq b- | ||
+ | \frac{a}{N} | ||
− | + | ( i + 1 ) , a \leq s \leq b \right \} ,\ \ | |
+ | i = 0 \dots N - 1 . | ||
+ | $$ | ||
− | + | In each strip, say the $ i $- | |
+ | th, the function $ K ( x , s ) $ | ||
+ | is approximated in the mean square, or uniformly, by functions | ||
+ | |||
+ | $$ | ||
+ | K _ {i} ( x , s ) = C _ {i} ( x) + P _ {i} ( x) Q _ {i} ( s) . | ||
+ | $$ | ||
In the simplest case, | In the simplest case, | ||
− | + | $$ | |
+ | K _ {i} ( x , s ) = K ( \xi _ {i} , s ) ,\ \ | ||
+ | \xi _ {i} \in \left [ b- | ||
+ | \frac{a}{N} | ||
+ | i , b- | ||
+ | \frac{a}{N} | ||
+ | ( i + 1 ) \right ] . | ||
+ | $$ | ||
− | The function | + | The function $ K _ {i} ( x , s ) $ |
+ | is now used to construct a [[Degenerate kernel|degenerate kernel]]: | ||
− | + | $$ \tag{2 } | |
+ | K _ {N} ( x , s ) = \sum _ { i= 0} ^ { N- 1} [ \widehat{C} _ {i} ( x) + | ||
+ | \widehat{P} _ {i} ( x) Q _ {i} ( s)] , | ||
+ | $$ | ||
− | + | $$ | |
+ | \widehat{P} _ {i} ( x) = \left \{ | ||
+ | \begin{array}{ll} | ||
+ | P _ {i} ( x) , &\ | ||
+ | x \in \left [ b- | ||
+ | \frac{a}{N} | ||
+ | i , b- | ||
+ | \frac{a}{N} | ||
+ | ( i + 1 ) \right ] , \\ | ||
+ | 0, & x \notin \left [ b- | ||
+ | \frac{a}{N} | ||
+ | i , b- | ||
+ | \frac{a}{N} | ||
+ | ( i + 1 ) \right ] , \\ | ||
+ | \end{array} | ||
+ | \right. | ||
+ | $$ | ||
− | + | $$ | |
+ | \widehat{C} _ {i} ( x) = \left \{ | ||
+ | \begin{array}{ll} | ||
+ | C _ {i} ( x) , &\ | ||
+ | x \in \left [ b- | ||
+ | \frac{a}{N} | ||
+ | i , b- | ||
+ | \frac{a}{N} | ||
+ | ( i + 1 ) \right ] , \\ | ||
+ | 0, & x \notin \left [ b- | ||
+ | \frac{a}{N} | ||
+ | i , b- | ||
+ | \frac{a}{N} | ||
+ | ( i + 1 ) \right ] . \\ | ||
+ | \end{array} | ||
+ | \right. | ||
+ | $$ | ||
− | The solution of the equation with the degenerate kernel (2) approximates the solution of equation (1), generally, the better the larger the number | + | The solution of the equation with the degenerate kernel (2) approximates the solution of equation (1), generally, the better the larger the number $ N $ |
+ | of strips and the better the approximation of $ K ( x , s ) $ | ||
+ | in each strip is. The approximate solution $ \phi _ {0} ( x) $ | ||
+ | can be further improved by using the iterative algorithm | ||
− | + | $$ \tag{3 } | |
+ | \phi _ {k} ( x) - \lambda \int\limits _ { a } ^ { b } K _ {N} ( x , s ) \phi _ {k} ( s) d s = | ||
+ | $$ | ||
− | + | $$ | |
+ | = \ | ||
+ | f ( x) + \lambda \int\limits _ { a } ^ { b } [ K ( x , s ) - | ||
+ | K _ {N} ( x , s ) ] \phi _ {k-1} ( s) d s . | ||
+ | $$ | ||
− | The iterations (3) converge in the mean square, or uniformly, to the solution of equation (1), provided the kernels | + | The iterations (3) converge in the mean square, or uniformly, to the solution of equation (1), provided the kernels $ K _ {N} ( x , s ) $ |
+ | approach $ K ( x , s ) $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> G.N. Polozhii, P.I. Chalenko, "The strip method for solving integral equations" ''Dop. Akad. Nauk UkrSSR'' : 4 (1962) pp. 427–431 (In Ukrainian) ((English abstract.))</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> G.N. Polozhii, P.I. Chalenko, "The strip method for solving integral equations" ''Dop. Akad. Nauk UkrSSR'' : 4 (1962) pp. 427–431 (In Ukrainian) ((English abstract.))</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== |
Latest revision as of 18:31, 7 June 2020
A method for the approximate solution of one-dimensional Fredholm integral equations of the second kind (cf. also Fredholm equation; Fredholm equation, numerical methods), based on replacing the kernel in a special way by a degenerate kernel, evaluating the resolvent of the degenerate equation and then improving the approximate solution through the use of a rapidly-convergent iterative algorithm.
Let the original integral equation be written as
$$ \tag{1 } \phi ( x) - \lambda \int\limits _ { a } ^ { b } K ( x , s ) \phi ( s) d s = f ( x) . $$
To construct the degenerate kernel, divide the square
$$ \{ a \leq x \leq b , a \leq s \leq b \} $$
into $ N $ strips
$$ \left \{ b- \frac{a}{N} i \leq x \leq b- \frac{a}{N} ( i + 1 ) , a \leq s \leq b \right \} ,\ \ i = 0 \dots N - 1 . $$
In each strip, say the $ i $- th, the function $ K ( x , s ) $ is approximated in the mean square, or uniformly, by functions
$$ K _ {i} ( x , s ) = C _ {i} ( x) + P _ {i} ( x) Q _ {i} ( s) . $$
In the simplest case,
$$ K _ {i} ( x , s ) = K ( \xi _ {i} , s ) ,\ \ \xi _ {i} \in \left [ b- \frac{a}{N} i , b- \frac{a}{N} ( i + 1 ) \right ] . $$
The function $ K _ {i} ( x , s ) $ is now used to construct a degenerate kernel:
$$ \tag{2 } K _ {N} ( x , s ) = \sum _ { i= 0} ^ { N- 1} [ \widehat{C} _ {i} ( x) + \widehat{P} _ {i} ( x) Q _ {i} ( s)] , $$
$$ \widehat{P} _ {i} ( x) = \left \{ \begin{array}{ll} P _ {i} ( x) , &\ x \in \left [ b- \frac{a}{N} i , b- \frac{a}{N} ( i + 1 ) \right ] , \\ 0, & x \notin \left [ b- \frac{a}{N} i , b- \frac{a}{N} ( i + 1 ) \right ] , \\ \end{array} \right. $$
$$ \widehat{C} _ {i} ( x) = \left \{ \begin{array}{ll} C _ {i} ( x) , &\ x \in \left [ b- \frac{a}{N} i , b- \frac{a}{N} ( i + 1 ) \right ] , \\ 0, & x \notin \left [ b- \frac{a}{N} i , b- \frac{a}{N} ( i + 1 ) \right ] . \\ \end{array} \right. $$
The solution of the equation with the degenerate kernel (2) approximates the solution of equation (1), generally, the better the larger the number $ N $ of strips and the better the approximation of $ K ( x , s ) $ in each strip is. The approximate solution $ \phi _ {0} ( x) $ can be further improved by using the iterative algorithm
$$ \tag{3 } \phi _ {k} ( x) - \lambda \int\limits _ { a } ^ { b } K _ {N} ( x , s ) \phi _ {k} ( s) d s = $$
$$ = \ f ( x) + \lambda \int\limits _ { a } ^ { b } [ K ( x , s ) - K _ {N} ( x , s ) ] \phi _ {k-1} ( s) d s . $$
The iterations (3) converge in the mean square, or uniformly, to the solution of equation (1), provided the kernels $ K _ {N} ( x , s ) $ approach $ K ( x , s ) $.
References
[1] | G.N. Polozhii, P.I. Chalenko, "The strip method for solving integral equations" Dop. Akad. Nauk UkrSSR : 4 (1962) pp. 427–431 (In Ukrainian) ((English abstract.)) |
Comments
Excellent surveys on the numerical solution of Fredholm equations of the second kind can be found in [a1] and [a2]; the strip method is not mentioned there, although other degenerate kernel methods are discussed, cf. also Degenerate kernels, method of.
References
[a1] | K.E. Atkinson, "A survey of numerical methods for the solution of Fredholm integral equations of the second kind" , SIAM (1976) |
[a2] | C.T.H. Baker, "The numerical treatment of integral equations" , Clarendon Press (1977) pp. Chapt. 4 |
Strip method (integral equations). Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Strip_method_(integral_equations)&oldid=17487