Namespaces
Variants
Actions

Difference between revisions of "Normal scheme"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (MR/ZBL numbers added)
m (tex done, typos)
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
A [[Scheme|scheme]] all local rings (cf. [[Local ring|Local ring]]) of which are normal (that is, reduced and integrally closed in their ring of fractions). A normal scheme is locally irreducible; for such a scheme the concepts of a connected component and an irreducible component are the same. The set of singular points of a Noetherian normal scheme has codimension greater than 1. The following normality criterion holds [[#References|[1]]]: A [[Noetherian scheme|Noetherian scheme]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067610/n0676101.png" /> is normal if and only if two conditions are satisfied: 1) for any point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067610/n0676102.png" /> of codimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067610/n0676103.png" /> the local ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067610/n0676104.png" /> is regular (cf. [[Regular ring (in commutative algebra)|Regular ring (in commutative algebra)]]); and 2) for any point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067610/n0676105.png" /> of codimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067610/n0676106.png" /> the depth of the ring (cf. [[Depth of a module|Depth of a module]]) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067610/n0676107.png" /> is greater than 1. Every [[Reduced scheme|reduced scheme]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067610/n0676108.png" /> has a normal scheme <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067610/n0676109.png" /> canonically connected with it (normalization). The <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067610/n06761010.png" />-scheme <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067610/n06761011.png" /> is integral, but not always finite over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067610/n06761012.png" />. However, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067610/n06761013.png" /> is excellent (see [[Excellent ring|Excellent ring]]), for example, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067610/n06761014.png" /> is a scheme of finite type over a field, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067610/n06761015.png" /> is finite over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067610/n06761016.png" />.
+
<!--
 +
n0676101.png
 +
$#A+1 = 66 n = 0
 +
$#C+1 = 66 : ~/encyclopedia/old_files/data/N067/N.0607610 Normal scheme
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
A [[Scheme|scheme]] all local rings (cf. [[Local ring|Local ring]]) of which are normal (that is, reduced and integrally closed in their ring of fractions). A normal scheme is locally irreducible; for such a scheme the concepts of a connected component and an irreducible component are the same. The set of singular points of a Noetherian normal scheme has codimension greater than 1. The following normality criterion holds [[#References|[1]]]: A [[Noetherian scheme|Noetherian scheme]]
 +
is normal if and only if two conditions are satisfied: 1) for any point   x \in X
 +
of codimension   \leq  1
 +
the local ring   {\mathcal O} _ {X,x}
 +
is regular (cf. [[Regular ring (in commutative algebra)|Regular ring (in commutative algebra)]]); and 2) for any point   x \in X
 +
of codimension > 1 $
 +
the depth of the ring (cf. [[Depth of a module|Depth of a module]])   {\mathcal O} _ {X,x}
 +
is greater than 1. Every [[Reduced scheme|reduced scheme]]   X
 +
has a normal scheme   X  ^  \nu 
 +
canonically connected with it (normalization). The   X -
 +
scheme   X  ^  \nu 
 +
is integral, but not always finite over   X .  
 +
However, if   X
 +
is excellent (see [[Excellent ring|Excellent ring]]), for example, if   X
 +
is a scheme of finite type over a field, then   X  ^  \nu 
 +
is finite over   X .
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> J.-P. Serre, "Algèbre locale. Multiplicités" , ''Lect. notes in math.'' , '''11''' , Springer (1975) {{MR|0201468}} {{ZBL|0296.13018}} </TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> J.-P. Serre, "Algèbre locale. Multiplicités" , ''Lect. notes in math.'' , '''11''' , Springer (1975) {{MR|0201468}} {{ZBL|0296.13018}} </TD></TR></table>
  
 +
====Comments====
 +
A normalization of an irreducible algebraic variety    X
 +
is an irreducible normal variety    X  ^  \nu 
 +
together with a regular mapping    \nu :  X  ^  \nu  \rightarrow X
 +
that is finite and a birational isomorphism.
  
 +
For an affine irreducible algebraic variety,    X  ^  \nu 
 +
is the integral closure of the ring    A ( X)
 +
of regular functions on    X
 +
in its field of fractions. The normalization has the following universality properties. Let    X
 +
be an integral scheme (i.e.    X
 +
is both reduced and irreducible, or, equivalently,    {\mathcal O} _ {X} ( U)
 +
is an integral domain for all open    U
 +
in    X ).
 +
For every normal integral scheme    Z
 +
and every dominant morphism    f :  Z \rightarrow X (
 +
i.e.    f ( Z)
 +
is dense in    X ),
 +
  f
 +
factors uniquely through the normalization    X  ^  \nu  \rightarrow X .
 +
So also [[Normal analytic space|Normal analytic space]].
  
====Comments====
+
Let    X
A normalization of an irreducible algebraic variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067610/n06761017.png" /> is an irreducible normal variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067610/n06761018.png" /> together with a regular mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067610/n06761019.png" /> that is finite and a birational isomorphism.
+
be a curve and    x
 +
a, possibly singular, point on    X .
 +
Let    X  ^  \nu  \rightarrow X
 +
be the normalization of   X
 +
and    \overline{x}\; _ {1} \dots \overline{x}\; _ {n}
 +
the inverse images of    x
 +
in    X  ^  \nu  .
 +
These points are called the branches of    X
 +
passing through    x .
 +
The terminology derives from the fact that the    \overline{x}\; _ {i}
 +
can be identified (in the case of varieties over    \mathbf R
 +
or    \mathbf C )
 +
with the "branches" of    X
 +
passing through    x .  
 +
More precisely, if the    U _ {i}
 +
are sufficiently small complex or real neighbourhoods of the    x _ {i} ,
 +
then some neighbourhood of    x
 +
is the union of the branches    \nu ( U _ {i} ) .  
 +
Let    T _ {i}
 +
be the tangent space at    \overline{x}\; _ {i}
 +
to    X  ^  \nu  .  
 +
Then    ( d \nu ) ( \overline{x}\; _ {i} ) ( T _ {i} )
 +
is some linear subspace of the tangent space to    X
 +
at    x .  
 +
It will be either a line or a point. In the first case the branch    \overline{x}\; _ {i}
 +
is called linear. The point    ( 0 , 0 )
 +
on    y  ^ {2} = x  ^ {3} + x  ^ {2}
 +
is an example of a point with two linear branches (with tangents  $  y = x $,
 +
$  y = - x $),
 +
and the point  $  ( 0 , 0 ) $
 +
on  $  y  ^ {2} = x  ^ {3} $
 +
gives an example of a two-fold non-linear branch.
 +
 
 +
$$
  
For an affine irreducible algebraic variety, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067610/n06761020.png" /> is the integral closure of the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067610/n06761021.png" /> of regular functions on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067610/n06761022.png" /> in its field of fractions. The normalization has the following universality properties. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067610/n06761023.png" /> be an integral scheme (i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067610/n06761024.png" /> is both reduced and irreducible, or, equivalently, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067610/n06761025.png" /> is an integral domain for all open <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067610/n06761026.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067610/n06761027.png" />). For every normal integral scheme <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067610/n06761028.png" /> and every dominant morphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067610/n06761029.png" /> (i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067610/n06761030.png" /> is dense in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067610/n06761031.png" />), <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067610/n06761032.png" /> factors uniquely through the normalization <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067610/n06761033.png" />. So also [[Normal analytic space|Normal analytic space]].
+
\begin{array}{lc}
 +
X  ^  \nu  &{}  \\
 +
{}  &\downarrow {\nu }  \\
 +
X  &{}  \\
 +
\end{array}
 +
\  \  \  \  \
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067610/n06761034.png" /> be a curve and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067610/n06761035.png" /> a, possibly singular, point on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067610/n06761036.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067610/n06761037.png" /> be the normalization of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067610/n06761038.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067610/n06761039.png" /> the inverse images of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067610/n06761040.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067610/n06761041.png" />. These points are called the branches of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067610/n06761042.png" /> passing through <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067610/n06761043.png" />. The terminology derives from the fact that the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067610/n06761044.png" /> can be identified (in the case of varieties over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067610/n06761045.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067610/n06761046.png" />) with the "branches" of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067610/n06761047.png" /> passing through <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067610/n06761048.png" />. More precisely, if the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067610/n06761049.png" /> are sufficiently small complex or real neighbourhoods of the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067610/n06761050.png" />, then some neighbourhood of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067610/n06761051.png" /> is the union of the branches <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067610/n06761052.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067610/n06761053.png" /> be the tangent space at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067610/n06761054.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067610/n06761055.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067610/n06761056.png" /> is some linear subspace of the tangent space to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067610/n06761057.png" /> at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067610/n06761058.png" />. It will be either a line or a point. In the first case the branch <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067610/n06761059.png" /> is called linear. The point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067610/n06761060.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067610/n06761061.png" /> is an example of a point with two linear branches (with tangents <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067610/n06761062.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067610/n06761063.png" />), and the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067610/n06761064.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067610/n06761065.png" /> gives an example of a two-fold non-linear branch.
+
\begin{array}{l}
 +
X  ^  \nu  \\
 +
\downarrow {\nu }  \\
 +
X  \\
 +
\end{array}
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/n/n067/n067610/n06761066.png" /></td> </tr></table>
+
$$
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Hartshorne, "Algebraic geometry" , Springer (1977) pp. 91 {{MR|0463157}} {{ZBL|0367.14001}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> I.R. Shafarevich, "Basic algebraic geometry" , Springer (1974) pp. Sect. II.5 (Translated from Russian) {{MR|0366917}} {{ZBL|0284.14001}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> H. Matsumura, "Commutative algebra" , Benjamin (1970) {{MR|0266911}} {{ZBL|0211.06501}} </TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Hartshorne, "Algebraic geometry" , Springer (1977) pp. 91 {{MR|0463157}} {{ZBL|0367.14001}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> I.R. Shafarevich, "Basic algebraic geometry" , Springer (1974) pp. Sect. II.5 (Translated from Russian) {{MR|0366917}} {{ZBL|0284.14001}} </TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> H. Matsumura, "Commutative algebra" , Benjamin (1970) {{MR|0266911}} {{ZBL|0211.06501}} </TD></TR></table>

Latest revision as of 15:10, 7 June 2020


A scheme all local rings (cf. Local ring) of which are normal (that is, reduced and integrally closed in their ring of fractions). A normal scheme is locally irreducible; for such a scheme the concepts of a connected component and an irreducible component are the same. The set of singular points of a Noetherian normal scheme has codimension greater than 1. The following normality criterion holds [1]: A Noetherian scheme X is normal if and only if two conditions are satisfied: 1) for any point x \in X of codimension \leq 1 the local ring {\mathcal O} _ {X,x} is regular (cf. Regular ring (in commutative algebra)); and 2) for any point x \in X of codimension > 1 the depth of the ring (cf. Depth of a module) {\mathcal O} _ {X,x} is greater than 1. Every reduced scheme X has a normal scheme X ^ \nu canonically connected with it (normalization). The X - scheme X ^ \nu is integral, but not always finite over X . However, if X is excellent (see Excellent ring), for example, if X is a scheme of finite type over a field, then X ^ \nu is finite over X .

References

[1] J.-P. Serre, "Algèbre locale. Multiplicités" , Lect. notes in math. , 11 , Springer (1975) MR0201468 Zbl 0296.13018

Comments

A normalization of an irreducible algebraic variety X is an irreducible normal variety X ^ \nu together with a regular mapping \nu : X ^ \nu \rightarrow X that is finite and a birational isomorphism.

For an affine irreducible algebraic variety, X ^ \nu is the integral closure of the ring A ( X) of regular functions on X in its field of fractions. The normalization has the following universality properties. Let X be an integral scheme (i.e. X is both reduced and irreducible, or, equivalently, {\mathcal O} _ {X} ( U) is an integral domain for all open U in X ). For every normal integral scheme Z and every dominant morphism f : Z \rightarrow X ( i.e. f ( Z) is dense in X ), f factors uniquely through the normalization X ^ \nu \rightarrow X . So also Normal analytic space.

Let X be a curve and x a, possibly singular, point on X . Let X ^ \nu \rightarrow X be the normalization of X and \overline{x}\; _ {1} \dots \overline{x}\; _ {n} the inverse images of x in X ^ \nu . These points are called the branches of X passing through x . The terminology derives from the fact that the \overline{x}\; _ {i} can be identified (in the case of varieties over \mathbf R or \mathbf C ) with the "branches" of X passing through x . More precisely, if the U _ {i} are sufficiently small complex or real neighbourhoods of the x _ {i} , then some neighbourhood of x is the union of the branches \nu ( U _ {i} ) . Let T _ {i} be the tangent space at \overline{x}\; _ {i} to X ^ \nu . Then ( d \nu ) ( \overline{x}\; _ {i} ) ( T _ {i} ) is some linear subspace of the tangent space to X at x . It will be either a line or a point. In the first case the branch \overline{x}\; _ {i} is called linear. The point ( 0 , 0 ) on y ^ {2} = x ^ {3} + x ^ {2} is an example of a point with two linear branches (with tangents y = x , y = - x ), and the point ( 0 , 0 ) on y ^ {2} = x ^ {3} gives an example of a two-fold non-linear branch.

\begin{array}{lc} X ^ \nu &{} \\ {} &\downarrow {\nu } \\ X &{} \\ \end{array} \ \ \ \ \ \begin{array}{l} X ^ \nu \\ \downarrow {\nu } \\ X \\ \end{array}

References

[a1] R. Hartshorne, "Algebraic geometry" , Springer (1977) pp. 91 MR0463157 Zbl 0367.14001
[a2] I.R. Shafarevich, "Basic algebraic geometry" , Springer (1974) pp. Sect. II.5 (Translated from Russian) MR0366917 Zbl 0284.14001
[a3] H. Matsumura, "Commutative algebra" , Benjamin (1970) MR0266911 Zbl 0211.06501
How to Cite This Entry:
Normal scheme. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Normal_scheme&oldid=23916
This article was adapted from an original article by V.I. Danilov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article