Difference between revisions of "Rotation theorems"
Ulf Rehmann (talk | contribs) m (Undo revision 48592 by Ulf Rehmann (talk)) Tag: Undo |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | r0826801.png | ||
+ | $#A+1 = 18 n = 0 | ||
+ | $#C+1 = 18 : ~/encyclopedia/old_files/data/R082/R.0802680 Rotation theorems | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | Theorems which characterize the change in the argument under a [[Conformal mapping|conformal mapping]]. Rotation theorems in the class $ S $ | |
+ | of functions $ f( z) = z + c _ {2} z ^ {2} + \dots $ | ||
+ | which are regular and univalent in the disc $ | z | < 1 $ | ||
+ | give accurate estimates of the argument of the derivative for functions of this class: | ||
− | + | $$ \tag{* } | |
+ | | \mathop{\rm arg} f ^ { \prime } ( z) | \leq \left \{ | ||
− | + | \begin{array}{ll} | |
+ | 4 \mathop{\rm arc} \sin | z | &\textrm{ if } | z | \leq 2 ^ {- 1/2 } , \\ | ||
+ | \pi + \mathop{\rm ln} \ | ||
− | + | \frac{| z | ^ {2} }{1 - | z | ^ {2} } | |
+ | &\textrm{ if } 2 ^ {- 1/2 } \leq | z | < 1. \\ | ||
+ | \end{array} | ||
− | + | \right .$$ | |
− | < | + | Here one considers the branch of $ \mathop{\rm arg} f ^ { \prime } ( z) $ |
+ | that vanishes when $ z = 0 $. | ||
+ | The upper and the lower bounds for $ \mathop{\rm arg} f ^ { \prime } ( z) $ | ||
+ | given by the inequalities (*) are sharp for any $ z $ | ||
+ | in the disc $ | z | < 1 $. | ||
+ | This rotation theorem was obtained by G.M. Goluzin [[#References|[1]]], [[#References|[5]]]; I.E. Bazilevich [[#References|[2]]] was the first to show that the inequalities (*) are sharp for $ 2 ^ {- 1/2 } < | z | < 1 $; | ||
+ | J.A. Jenkins [[#References|[3]]] gave a complete analysis of the cases of equality in these estimates. | ||
− | There are also rotation theorems in other classes of functions which realize a univalent conformal mapping of the disc or its exterior, and in classes of functions which are univalent in a multiply-connected domain (cf. [[#References|[5]]], [[#References|[3]]], [[Distortion theorems|Distortion theorems]]; [[Univalent function|Univalent function]]). Rotation theorems have also been extended to include the case of | + | Rotation theorems in the class $ S $ |
+ | is also the name given to estimates of $ \mathop{\rm arg} ( f( z)/z) $ | ||
+ | and to estimates of expressions of the type | ||
+ | |||
+ | $$ | ||
+ | \lambda \mathop{\rm arg} f ^ { \prime } ( z) - ( 1 - \lambda ) \mathop{\rm arg} \ | ||
+ | |||
+ | \frac{f ( z) }{z } | ||
+ | ,\ \ | ||
+ | 0 < \lambda < 1. | ||
+ | $$ | ||
+ | |||
+ | The simplest estimates of this type in the class $ S $ | ||
+ | are the sharp inequalities (the appropriate branches of the arguments are considered): | ||
+ | |||
+ | $$ | ||
+ | \left | \mathop{\rm arg} | ||
+ | \frac{f( z) }{z } | ||
+ | \right | \leq \mathop{\rm ln} \ | ||
+ | |||
+ | \frac{1 + | z | }{1 - | z | } | ||
+ | ,\ | z | < 1; | ||
+ | $$ | ||
+ | |||
+ | $$ | ||
+ | \left | \mathop{\rm arg} | ||
+ | \frac{zf ^ { \prime } ( z) }{f( z) } | ||
+ | \right | | ||
+ | \leq \mathop{\rm ln} | ||
+ | \frac{1 + | z | }{1 - | z | } | ||
+ | ,\ \ | ||
+ | | z | < 1. | ||
+ | $$ | ||
+ | |||
+ | There are also rotation theorems in other classes of functions which realize a univalent conformal mapping of the disc or its exterior, and in classes of functions which are univalent in a multiply-connected domain (cf. [[#References|[5]]], [[#References|[3]]], [[Distortion theorems|Distortion theorems]]; [[Univalent function|Univalent function]]). Rotation theorems have also been extended to include the case of $ p $- | ||
+ | valued functions (cf. addenda to [[#References|[5]]], and also [[Multivalent function|Multivalent function]]). | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> G.M. Goluzin, "On distortion theorems in the theory of conformal mappings" ''Mat. Sb.'' , '''1 (43)''' : 1 (1936) pp. 127–135 (In Russian) (German abstract)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> I.E. Bazilevich, "Sur les théorèmes de Koebe–Bieberbach" ''Mat. Sb.'' , '''1 (43)''' : 3 (1936) pp. 283–292</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> J.A. Jenkins, "Univalent functions and conformal mapping" , Springer (1958)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> H. Grunsky, "Neue Abschätzungen zur konformen Abbildung ein- und mehrfach zusammenhängender Bereiche" ''Schriftenreihe Math. Sem. Inst. Angew. Math. Univ. Berlin'' , '''1''' (1932) pp. 95–140</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> G.M. Goluzin, "Geometric theory of functions of a complex variable" , ''Transl. Math. Monogr.'' , '''26''' , Amer. Math. Soc. (1969) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> G.M. Goluzin, "On distortion theorems in the theory of conformal mappings" ''Mat. Sb.'' , '''1 (43)''' : 1 (1936) pp. 127–135 (In Russian) (German abstract)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> I.E. Bazilevich, "Sur les théorèmes de Koebe–Bieberbach" ''Mat. Sb.'' , '''1 (43)''' : 3 (1936) pp. 283–292</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> J.A. Jenkins, "Univalent functions and conformal mapping" , Springer (1958)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> H. Grunsky, "Neue Abschätzungen zur konformen Abbildung ein- und mehrfach zusammenhängender Bereiche" ''Schriftenreihe Math. Sem. Inst. Angew. Math. Univ. Berlin'' , '''1''' (1932) pp. 95–140</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> G.M. Goluzin, "Geometric theory of functions of a complex variable" , ''Transl. Math. Monogr.'' , '''26''' , Amer. Math. Soc. (1969) (Translated from Russian)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | For the class | + | For the class $ S $ |
+ | see also [[Bieberbach conjecture|Bieberbach conjecture]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> P.L. Duren, "Univalent functions" , Springer (1983) pp. Sect. 10.11</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> P.L. Duren, "Univalent functions" , Springer (1983) pp. Sect. 10.11</TD></TR></table> |
Revision as of 14:55, 7 June 2020
Theorems which characterize the change in the argument under a conformal mapping. Rotation theorems in the class $ S $
of functions $ f( z) = z + c _ {2} z ^ {2} + \dots $
which are regular and univalent in the disc $ | z | < 1 $
give accurate estimates of the argument of the derivative for functions of this class:
$$ \tag{* } | \mathop{\rm arg} f ^ { \prime } ( z) | \leq \left \{ \begin{array}{ll} 4 \mathop{\rm arc} \sin | z | &\textrm{ if } | z | \leq 2 ^ {- 1/2 } , \\ \pi + \mathop{\rm ln} \ \frac{| z | ^ {2} }{1 - | z | ^ {2} } &\textrm{ if } 2 ^ {- 1/2 } \leq | z | < 1. \\ \end{array} \right .$$
Here one considers the branch of $ \mathop{\rm arg} f ^ { \prime } ( z) $ that vanishes when $ z = 0 $. The upper and the lower bounds for $ \mathop{\rm arg} f ^ { \prime } ( z) $ given by the inequalities (*) are sharp for any $ z $ in the disc $ | z | < 1 $. This rotation theorem was obtained by G.M. Goluzin [1], [5]; I.E. Bazilevich [2] was the first to show that the inequalities (*) are sharp for $ 2 ^ {- 1/2 } < | z | < 1 $; J.A. Jenkins [3] gave a complete analysis of the cases of equality in these estimates.
Rotation theorems in the class $ S $ is also the name given to estimates of $ \mathop{\rm arg} ( f( z)/z) $ and to estimates of expressions of the type
$$ \lambda \mathop{\rm arg} f ^ { \prime } ( z) - ( 1 - \lambda ) \mathop{\rm arg} \ \frac{f ( z) }{z } ,\ \ 0 < \lambda < 1. $$
The simplest estimates of this type in the class $ S $ are the sharp inequalities (the appropriate branches of the arguments are considered):
$$ \left | \mathop{\rm arg} \frac{f( z) }{z } \right | \leq \mathop{\rm ln} \ \frac{1 + | z | }{1 - | z | } ,\ | z | < 1; $$
$$ \left | \mathop{\rm arg} \frac{zf ^ { \prime } ( z) }{f( z) } \right | \leq \mathop{\rm ln} \frac{1 + | z | }{1 - | z | } ,\ \ | z | < 1. $$
There are also rotation theorems in other classes of functions which realize a univalent conformal mapping of the disc or its exterior, and in classes of functions which are univalent in a multiply-connected domain (cf. [5], [3], Distortion theorems; Univalent function). Rotation theorems have also been extended to include the case of $ p $- valued functions (cf. addenda to [5], and also Multivalent function).
References
[1] | G.M. Goluzin, "On distortion theorems in the theory of conformal mappings" Mat. Sb. , 1 (43) : 1 (1936) pp. 127–135 (In Russian) (German abstract) |
[2] | I.E. Bazilevich, "Sur les théorèmes de Koebe–Bieberbach" Mat. Sb. , 1 (43) : 3 (1936) pp. 283–292 |
[3] | J.A. Jenkins, "Univalent functions and conformal mapping" , Springer (1958) |
[4] | H. Grunsky, "Neue Abschätzungen zur konformen Abbildung ein- und mehrfach zusammenhängender Bereiche" Schriftenreihe Math. Sem. Inst. Angew. Math. Univ. Berlin , 1 (1932) pp. 95–140 |
[5] | G.M. Goluzin, "Geometric theory of functions of a complex variable" , Transl. Math. Monogr. , 26 , Amer. Math. Soc. (1969) (Translated from Russian) |
Comments
For the class $ S $ see also Bieberbach conjecture.
References
[a1] | P.L. Duren, "Univalent functions" , Springer (1983) pp. Sect. 10.11 |
Rotation theorems. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Rotation_theorems&oldid=49412