Namespaces
Variants
Actions

Difference between revisions of "Rational mapping"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Category:Algebraic geometry)
m (tex encoded by computer)
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
A generalization of the concept of a [[Rational function|rational function]] on an [[Algebraic variety|algebraic variety]]. Namely, a rational mapping from an irreducible algebraic variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r0776101.png" /> to an algebraic variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r0776102.png" /> (both defined over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r0776103.png" />) is an equivalent class of pairs <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r0776104.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r0776105.png" /> is a non-empty open subset of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r0776106.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r0776107.png" /> is a morphism from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r0776108.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r0776109.png" />. Two pairs <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761010.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761011.png" /> are said to be equivalent if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761012.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761013.png" /> coincide on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761014.png" />. In particular, a rational mapping from a variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761015.png" /> to an affine line is a rational function on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761016.png" />. For every rational mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761017.png" /> there is a pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761018.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761019.png" /> for all equivalent pairs <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761020.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761021.png" /> is the restriction of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761022.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761023.png" />. The open subset <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761024.png" /> is called the domain of regularity of the rational mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761025.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761026.png" /> is the image of the variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761027.png" /> (written <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761028.png" />) under <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761029.png" />.
+
<!--
 +
r0776101.png
 +
$#A+1 = 57 n = 0
 +
$#C+1 = 57 : ~/encyclopedia/old_files/data/R077/R.0707610 Rational mapping
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761030.png" /> is a rational mapping of algebraic varieties and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761031.png" /> is dense in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761032.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761033.png" /> determines an imbedding of fields, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761034.png" />. Conversely, an imbedding of the fields of rational functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761035.png" /> determines a rational mapping from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761036.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761037.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761038.png" /> induces an isomorphism of the fields <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761039.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761040.png" /> of rational functions, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761041.png" /> is called a birational mapping.
+
{{TEX|auto}}
 +
{{TEX|done}}
  
The set of points of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761042.png" /> at which the rational mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761043.png" /> is not regular has codimension 1, in general. But if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761044.png" /> is complete and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761045.png" /> is smooth and irreducible, then this set has codimension at least 2. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761046.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761047.png" /> are complete irreducible varieties over an algebraically closed field of characteristic 0, then the rational mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761048.png" /> can be included in a commutative diagram (see [[#References|[2]]]):
+
A generalization of the concept of a [[Rational function|rational function]] on an [[Algebraic variety|algebraic variety]]. Namely, a rational mapping from an irreducible algebraic variety 
 +
to an algebraic variety    Y (
 +
both defined over a field    k )
 +
is an equivalent class of pairs    ( U , \phi _ {U} ) ,  
 +
where    U
 +
is a non-empty open subset of    X
 +
and    \phi _ {U}
 +
is a morphism from    U
 +
to    Y .  
 +
Two pairs    ( U , \phi _ {U} )
 +
and    ( V , \psi _ {V} )
 +
are said to be equivalent if   \phi _ {U}
 +
and    \psi _ {V}
 +
coincide on    U \cap V .  
 +
In particular, a rational mapping from a variety    X
 +
to an affine line is a rational function on    X .  
 +
For every rational mapping  $  \phi : X \rightarrow Y $
 +
there is a pair    ( \widetilde{U}  , \phi _ {\widetilde{U}  }  )
 +
such that    U \subseteq \widetilde{U} 
 +
for all equivalent pairs  $  ( U , \phi _ {U} ) $
 +
and   \phi _ {U}
 +
is the restriction of    \phi _ {\widetilde{U}  } 
 +
to    U .  
 +
The open subset    \widetilde{U} 
 +
is called the domain of regularity of the rational mapping   \phi ,
 +
and    \phi ( \widetilde{U}  )
 +
is the image of the variety    X (
 +
written  $  \phi ( X) $)  
 +
under    \phi .
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761049.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
+
If  $  \phi : X \rightarrow Y $
 +
is a rational mapping of algebraic varieties and    \phi ( X)
 +
is dense in    Y ,
 +
then    \phi
 +
determines an imbedding of fields,  $  \phi  ^ {*} : k ( Y) \rightarrow k ( Y) $.
 +
Conversely, an imbedding of the fields of rational functions  $  \phi  ^ {*} : k ( Y) \rightarrow k ( Y) $
 +
determines a rational mapping from    X
 +
to    Y .  
 +
If    \phi
 +
induces an isomorphism of the fields    k ( X)
 +
and  $  k ( Y) $
 +
of rational functions, then    \phi
 +
is called a birational mapping.
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761050.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761051.png" /> are morphisms of an algebraic variety <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761052.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761053.png" /> is a composite of monoidal transformations (cf. [[Monoidal transformation|Monoidal transformation]]). If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761054.png" /> is a [[Birational mapping|birational mapping]] of complete non-singular surfaces, then there exists a diagram (*) in which both <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761055.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761056.png" /> are composites of monoidal transformations with non-singular centres (Zariski's theorem), that is, every birational mapping of complete non-singular surface decomposes into monoidal transformations with non-singular centres and their inverses. In the case when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077610/r07761057.png" />, the question of whether every birational mapping can be decomposed in this way is open (1990).
+
The set of points of    X
 +
at which the rational mapping  $  \phi : X \rightarrow Y $
 +
is not regular has codimension 1, in general. But if    Y
 +
is complete and    X
 +
is smooth and irreducible, then this set has codimension at least 2. If    X
 +
and    Y
 +
are complete irreducible varieties over an algebraically closed field of characteristic 0, then the rational mapping    \phi :  X \rightarrow Y
 +
can be included in a commutative diagram (see [[#References|[2]]]):
 +
 
 +
$$ \tag{* }
 +
 
 +
\begin{array}{ccc}
 +
{}  & Z  &{}  \\
 +
{} _  \eta  \swarrow  &{}  &\searrow _ {f}  \\
 +
X  &  \mathop \rightarrow \limits _  \phi    & Y  \\
 +
\end{array}
 +
 
 +
$$
 +
 
 +
where    \eta ,
 +
  f
 +
are morphisms of an algebraic variety   Z
 +
and   \eta
 +
is a composite of monoidal transformations (cf. [[Monoidal transformation|Monoidal transformation]]). If $  \phi : X \rightarrow Y $
 +
is a [[Birational mapping|birational mapping]] of complete non-singular surfaces, then there exists a diagram (*) in which both   f
 +
and   \eta
 +
are composites of monoidal transformations with non-singular centres (Zariski's theorem), that is, every birational mapping of complete non-singular surface decomposes into monoidal transformations with non-singular centres and their inverses. In the case when   \mathop{\rm dim} X \geq  3 ,  
 +
the question of whether every birational mapping can be decomposed in this way is open (1990).
  
 
====References====
 
====References====

Latest revision as of 14:54, 7 June 2020


A generalization of the concept of a rational function on an algebraic variety. Namely, a rational mapping from an irreducible algebraic variety X to an algebraic variety Y ( both defined over a field k ) is an equivalent class of pairs ( U , \phi _ {U} ) , where U is a non-empty open subset of X and \phi _ {U} is a morphism from U to Y . Two pairs ( U , \phi _ {U} ) and ( V , \psi _ {V} ) are said to be equivalent if \phi _ {U} and \psi _ {V} coincide on U \cap V . In particular, a rational mapping from a variety X to an affine line is a rational function on X . For every rational mapping \phi : X \rightarrow Y there is a pair ( \widetilde{U} , \phi _ {\widetilde{U} } ) such that U \subseteq \widetilde{U} for all equivalent pairs ( U , \phi _ {U} ) and \phi _ {U} is the restriction of \phi _ {\widetilde{U} } to U . The open subset \widetilde{U} is called the domain of regularity of the rational mapping \phi , and \phi ( \widetilde{U} ) is the image of the variety X ( written \phi ( X) ) under \phi .

If \phi : X \rightarrow Y is a rational mapping of algebraic varieties and \phi ( X) is dense in Y , then \phi determines an imbedding of fields, \phi ^ {*} : k ( Y) \rightarrow k ( Y) . Conversely, an imbedding of the fields of rational functions \phi ^ {*} : k ( Y) \rightarrow k ( Y) determines a rational mapping from X to Y . If \phi induces an isomorphism of the fields k ( X) and k ( Y) of rational functions, then \phi is called a birational mapping.

The set of points of X at which the rational mapping \phi : X \rightarrow Y is not regular has codimension 1, in general. But if Y is complete and X is smooth and irreducible, then this set has codimension at least 2. If X and Y are complete irreducible varieties over an algebraically closed field of characteristic 0, then the rational mapping \phi : X \rightarrow Y can be included in a commutative diagram (see [2]):

\tag{* } \begin{array}{ccc} {} & Z &{} \\ {} _ \eta \swarrow &{} &\searrow _ {f} \\ X & \mathop \rightarrow \limits _ \phi & Y \\ \end{array}

where \eta , f are morphisms of an algebraic variety Z and \eta is a composite of monoidal transformations (cf. Monoidal transformation). If \phi : X \rightarrow Y is a birational mapping of complete non-singular surfaces, then there exists a diagram (*) in which both f and \eta are composites of monoidal transformations with non-singular centres (Zariski's theorem), that is, every birational mapping of complete non-singular surface decomposes into monoidal transformations with non-singular centres and their inverses. In the case when \mathop{\rm dim} X \geq 3 , the question of whether every birational mapping can be decomposed in this way is open (1990).

References

[1] I.R. Shafarevich, "Basic algebraic geometry" , Springer (1977) (Translated from Russian) MR0447223 Zbl 0362.14001
[2] H. Hironaka, "Resolution of singularities of an algebraic variety over a field of characteristic zero I" Ann. of Math. , 79 : 1–2 (1964) pp. 109–326 MR0199184 Zbl 0122.38603
How to Cite This Entry:
Rational mapping. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Rational_mapping&oldid=34204
This article was adapted from an original article by Vik.S. Kulikov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article