|
|
(2 intermediate revisions by the same user not shown) |
Line 1: |
Line 1: |
− | One of the generalizations of the concept of a [[Derivative|derivative]]. Let there exist a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071900/p0719001.png" /> such that for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071900/p0719002.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071900/p0719003.png" /> one has
| + | <!-- |
| + | p0719001.png |
| + | $#A+1 = 42 n = 0 |
| + | $#C+1 = 42 : ~/encyclopedia/old_files/data/P071/P.0701900 Peano derivative |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071900/p0719004.png" /></td> </tr></table>
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071900/p0719005.png" /> are constants and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071900/p0719006.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071900/p0719007.png" />; let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071900/p0719008.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071900/p0719009.png" /> is called the generalized Peano derivative of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071900/p07190010.png" /> of the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071900/p07190011.png" /> at the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071900/p07190012.png" />. Symbol: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071900/p07190013.png" />; in particular, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071900/p07190014.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071900/p07190015.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071900/p07190016.png" /> exists, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071900/p07190017.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071900/p07190018.png" />, also exists. If the finite ordinary two-sided derivative <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071900/p07190019.png" /> exists, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071900/p07190020.png" />. The converse is false for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071900/p07190021.png" />: For the function
| + | One of the generalizations of the concept of a [[Derivative|derivative]]. Let there exist a $ \delta > 0 $ |
| + | such that for all $ t $ |
| + | with $ | t | < \delta $ |
| + | one has |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071900/p07190022.png" /></td> </tr></table>
| + | $$ |
| + | f( x _ {0} + t) = \alpha _ {0} + \alpha _ {1} t + \dots + |
| + | \frac{\alpha _ {r} }{r!} |
| + | t |
| + | ^ {r} + \gamma ( t) t ^ {r} , |
| + | $$ |
| | | |
− | one has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071900/p07190023.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071900/p07190024.png" /> but <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071900/p07190025.png" /> does not exist for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071900/p07190026.png" /> (since <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071900/p07190027.png" /> is discontinuous for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071900/p07190028.png" />). Consequently, the ordinary derivative <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071900/p07190029.png" /> does not exist for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071900/p07190030.png" />.
| + | where $ \alpha _ {0} \dots \alpha _ {r} $ |
| + | are constants and $ \gamma ( t) \rightarrow 0 $ |
| + | as $ t \rightarrow 0 $; |
| + | let $ \gamma ( 0) = 0 $. |
| + | Then $ \alpha _ {r} $ |
| + | is called the generalized Peano derivative of order $ r $ |
| + | of the function $ f $ |
| + | at the point $ x _ {0} $. |
| + | Symbol: $ f _ {(} r) ( x _ {0} ) = \alpha _ {r} $; |
| + | in particular, $ \alpha _ {0} = f( x _ {0} ) $, |
| + | $ \alpha _ {1} = f _ {(} 1) ( x _ {0} ) $. |
| + | If $ f _ {(} r) ( x _ {0} ) $ |
| + | exists, then $ f _ {(} r- 1) ( x _ {0} ) $, |
| + | $ r \geq 1 $, |
| + | also exists. If the finite ordinary two-sided derivative $ f ^ { ( r) } ( x _ {0} ) $ |
| + | exists, then $ f _ {(} r) ( x _ {0} ) = f ^ { ( r) } ( x _ {0} ) $. |
| + | The converse is false for $ r > 1 $: |
| + | For the function |
| | | |
− | Infinite generalized Peano derivatives have also been introduced. Let for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071900/p07190031.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071900/p07190032.png" />,
| + | $$ |
| + | f( x) = \left \{ |
| + | \begin{array}{ll} |
| + | e ^ {- 1/x ^ {2} } , & x \neq 0 \textrm{ and } \textrm{ rational } , \\ |
| + | 0, & x = 0 \textrm{ or } \textrm{ irrational } , \\ |
| + | \end{array} |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071900/p07190033.png" /></td> </tr></table>
| + | \right .$$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071900/p07190034.png" /> are constants and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071900/p07190035.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071900/p07190036.png" /> (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071900/p07190037.png" /> is a number or the symbol <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071900/p07190038.png" />). Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071900/p07190039.png" /> is also called the Peano derivative of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071900/p07190040.png" /> of the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071900/p07190041.png" /> at the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p071/p071900/p07190042.png" />. It was introduced by G. Peano.
| + | one has $ f _ {(} r) ( 0) = 0 $, |
| + | $ r = 1, 2 \dots $ |
| + | but $ f _ {(} 1) ( x) $ |
| + | does not exist for $ x \neq 0 $( |
| + | since $ f( x) $ |
| + | is discontinuous for $ x \neq 0 $). |
| + | Consequently, the ordinary derivative $ f ^ { ( r) } ( 0) $ |
| + | does not exist for $ r > 1 $. |
| + | |
| + | Infinite generalized Peano derivatives have also been introduced. Let for all $ t $ |
| + | with $ | t | < \delta $, |
| + | |
| + | $$ |
| + | f( x _ {0} + t) = \alpha _ {0} + \alpha _ {1} t + \dots |
| + | + |
| + | \frac{\alpha _ {r} ( t) }{r!} |
| + | t ^ {r} , |
| + | $$ |
| + | |
| + | where $ \alpha _ {0} \dots \alpha _ {r-} 1 $ |
| + | are constants and $ \alpha _ {r} ( t) \rightarrow \alpha _ {r} $ |
| + | as $ t \rightarrow 0 $( |
| + | $ \alpha _ {r} $ |
| + | is a number or the symbol $ \infty $). |
| + | Then $ \alpha _ {r} $ |
| + | is also called the Peano derivative of order $ r $ |
| + | of the function $ f $ |
| + | at the point $ x _ {0} $. |
| + | It was introduced by G. Peano. |
One of the generalizations of the concept of a derivative. Let there exist a $ \delta > 0 $
such that for all $ t $
with $ | t | < \delta $
one has
$$
f( x _ {0} + t) = \alpha _ {0} + \alpha _ {1} t + \dots +
\frac{\alpha _ {r} }{r!}
t
^ {r} + \gamma ( t) t ^ {r} ,
$$
where $ \alpha _ {0} \dots \alpha _ {r} $
are constants and $ \gamma ( t) \rightarrow 0 $
as $ t \rightarrow 0 $;
let $ \gamma ( 0) = 0 $.
Then $ \alpha _ {r} $
is called the generalized Peano derivative of order $ r $
of the function $ f $
at the point $ x _ {0} $.
Symbol: $ f _ {(} r) ( x _ {0} ) = \alpha _ {r} $;
in particular, $ \alpha _ {0} = f( x _ {0} ) $,
$ \alpha _ {1} = f _ {(} 1) ( x _ {0} ) $.
If $ f _ {(} r) ( x _ {0} ) $
exists, then $ f _ {(} r- 1) ( x _ {0} ) $,
$ r \geq 1 $,
also exists. If the finite ordinary two-sided derivative $ f ^ { ( r) } ( x _ {0} ) $
exists, then $ f _ {(} r) ( x _ {0} ) = f ^ { ( r) } ( x _ {0} ) $.
The converse is false for $ r > 1 $:
For the function
$$
f( x) = \left \{
\begin{array}{ll}
e ^ {- 1/x ^ {2} } , & x \neq 0 \textrm{ and } \textrm{ rational } , \\
0, & x = 0 \textrm{ or } \textrm{ irrational } , \\
\end{array}
\right .$$
one has $ f _ {(} r) ( 0) = 0 $,
$ r = 1, 2 \dots $
but $ f _ {(} 1) ( x) $
does not exist for $ x \neq 0 $(
since $ f( x) $
is discontinuous for $ x \neq 0 $).
Consequently, the ordinary derivative $ f ^ { ( r) } ( 0) $
does not exist for $ r > 1 $.
Infinite generalized Peano derivatives have also been introduced. Let for all $ t $
with $ | t | < \delta $,
$$
f( x _ {0} + t) = \alpha _ {0} + \alpha _ {1} t + \dots
+
\frac{\alpha _ {r} ( t) }{r!}
t ^ {r} ,
$$
where $ \alpha _ {0} \dots \alpha _ {r-} 1 $
are constants and $ \alpha _ {r} ( t) \rightarrow \alpha _ {r} $
as $ t \rightarrow 0 $(
$ \alpha _ {r} $
is a number or the symbol $ \infty $).
Then $ \alpha _ {r} $
is also called the Peano derivative of order $ r $
of the function $ f $
at the point $ x _ {0} $.
It was introduced by G. Peano.