Difference between revisions of "Wiener integral"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
| Line 1: | Line 1: | ||
| + | <!-- | ||
| + | w0979201.png | ||
| + | $#A+1 = 64 n = 0 | ||
| + | $#C+1 = 64 : ~/encyclopedia/old_files/data/W097/W.0907920 Wiener integral | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| + | |||
| + | {{TEX|auto}} | ||
| + | {{TEX|done}} | ||
| + | |||
An abstract integral of Lebesgue type over sets in an infinite-dimensional function space of functionals defined on these sets. Introduced by N. Wiener in the nineteentwenties in connection with problems on [[Brownian motion|Brownian motion]] [[#References|[1]]], [[#References|[2]]]. | An abstract integral of Lebesgue type over sets in an infinite-dimensional function space of functionals defined on these sets. Introduced by N. Wiener in the nineteentwenties in connection with problems on [[Brownian motion|Brownian motion]] [[#References|[1]]], [[#References|[2]]]. | ||
| − | Let | + | Let $ C _ {0} $ |
| + | be the vector space of continuous real-valued functions $ x $ | ||
| + | defined on $ [ 0, 1] $ | ||
| + | such that $ x( 0) = 0 $, | ||
| + | with norm | ||
| − | + | $$ | |
| + | \| x \| = \max _ {t \in [ 0, 1] } | x ( t) |. | ||
| + | $$ | ||
The set | The set | ||
| − | + | $$ | |
| + | Q = \{ {x \in C _ {0} } : { | ||
| + | a _ {i} < x ( t _ {i} ) \leq b _ {i} ,\ | ||
| + | 0 = t _ {0} < t _ {1} < \dots < t _ {n} = 1 } \} | ||
| + | $$ | ||
| − | is called a quasi-interval of this space. Here, | + | is called a quasi-interval of this space. Here, $ a _ {i} $ |
| + | and $ b _ {i} $ | ||
| + | may be equal to $ - \infty $ | ||
| + | and $ + \infty $, | ||
| + | respectively, but then the symbol $ < $ | ||
| + | must replace $ \leq $. | ||
| + | The whole space $ C _ {0} = \{ {x ( t) } : {- \infty < x ( 1) < + \infty } \} $ | ||
| + | is an example of a quasi-interval. | ||
| − | The Wiener measure of a quasi-interval | + | The Wiener measure of a quasi-interval $ Q $ |
| + | is the number | ||
| − | + | $$ | |
| + | \mu _ {W} ( Q) = \ | ||
| + | { | ||
| + | \frac{1}{\sqrt {\pi ^ {n} \prod _ { i = 1 } ^ { n } ( t _ {i} - t _ {i-} 1 ) }} | ||
| + | } | ||
| + | \int\limits _ { a _ 1 } ^ {b _ 1 } \dots \int\limits _ { a _ n } ^ {b _ n} | ||
| + | e ^ {- L _ {n} } dx _ {n} \dots dx _ {1} , | ||
| + | $$ | ||
where | where | ||
| − | + | $$ | |
| + | L _ {n} = \sum _ {j = 1 } ^ { n } | ||
| + | |||
| + | \frac{( x _ {j} - x _ {j-} 1 ) ^ {2} }{t _ {j} - t _ {j-} 1 } | ||
| + | |||
| + | $$ | ||
| − | and | + | and $ x _ {j} = x ( t _ {j} ) $. |
| + | This measure extends to a $ \sigma $- | ||
| + | additive measure on the Borel field of sets generated by the quasi-intervals, known also as Wiener measure. | ||
| − | Let | + | Let $ F $ |
| + | be a functional defined on $ C _ {0} $ | ||
| + | that is measurable with respect to the measure $ \mu _ {W} $. | ||
| + | The Lebesgue-type integral | ||
| − | + | $$ | |
| + | \int\limits _ { C _ 0 } F ( x) d \mu _ {W} ( x) | ||
| + | $$ | ||
| − | is known as the Wiener integral, or as the integral with respect to the Wiener measure, of the functional | + | is known as the Wiener integral, or as the integral with respect to the Wiener measure, of the functional $ F $. |
| + | If $ E \subset C _ {0} $ | ||
| + | is measurable, then | ||
| − | + | $$ | |
| + | \int\limits _ { E } F ( x) d \mu _ {W} ( x) = \ | ||
| + | \int\limits _ { C _ 0 } F ( x) \chi _ {E} ( x) d \mu _ {W} ( x) , | ||
| + | $$ | ||
| − | where | + | where $ \chi _ {E} $ |
| + | is the characteristic function of the set $ E $. | ||
| − | Wiener's integral displays several properties of the ordinary Lebesgue integral. In particular, a functional which is bounded and measurable on a set | + | Wiener's integral displays several properties of the ordinary Lebesgue integral. In particular, a functional which is bounded and measurable on a set $ E $ |
| + | is integrable with respect to the Wiener measure on this set and if, in addition, the functional $ F $ | ||
| + | is continuous and non-negative, then | ||
| − | + | $$ | |
| + | \int\limits _ { C _ 0 } F ( x) d \mu _ {W} ( x) = | ||
| + | $$ | ||
| − | + | $$ | |
| + | = \ | ||
| + | \lim\limits _ {n \rightarrow \infty } | ||
| + | \frac{1}{\sqrt { {\pi ^ {n} \prod _ {i = 1 } ^ { n } ( t _ {i} - t _ {i-} 1 ) } }} | ||
| + | \int\limits | ||
| + | _ { \mathbf R } ^ {n} | ||
| + | \frac{F _ {n} ( x _ {1} \dots x _ {n} ) }{e ^ {L} _ {n} } | ||
| + | dx _ {1} \dots dx _ {n} , | ||
| + | $$ | ||
| − | where | + | where $ F _ {n} ( x _ {1} \dots x _ {n} ) $ |
| + | is the value of $ F $ | ||
| + | at linear interpolation of $ x( t) $ | ||
| + | between points $ ( t _ {i} , x _ {i} \equiv x( t _ {i} )) $. | ||
The computation of a Wiener integral presents considerable difficulties, even for the simplest functionals. The task may sometimes be reduced to solving a single differential equation [[#References|[1]]]. | The computation of a Wiener integral presents considerable difficulties, even for the simplest functionals. The task may sometimes be reduced to solving a single differential equation [[#References|[1]]]. | ||
| Line 45: | Line 115: | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> I.M. Koval'chik, "The Wiener integral" ''Russian Math. Surveys'' , '''18''' : 1 (1963) pp. 97–134 ''Uspekhi Mat. Nauk'' , '''18''' : 1 (1963) pp. 97–134</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> G.E. Shilov, "Integration in infinite dimensional spaces and the Wiener integral" ''Russ. Math. Surveys'' , '''18''' : 2 (1963) pp. 99–120 ''Uspekhi Mat. Nauk'' , '''2''' (1963) pp. 99–120</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> I.M. Koval'chik, "The Wiener integral" ''Russian Math. Surveys'' , '''18''' : 1 (1963) pp. 97–134 ''Uspekhi Mat. Nauk'' , '''18''' : 1 (1963) pp. 97–134</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> G.E. Shilov, "Integration in infinite dimensional spaces and the Wiener integral" ''Russ. Math. Surveys'' , '''18''' : 2 (1963) pp. 99–120 ''Uspekhi Mat. Nauk'' , '''2''' (1963) pp. 99–120</TD></TR></table> | ||
| − | |||
| − | |||
====Comments==== | ====Comments==== | ||
| − | Further references on the computation of Wiener integrals in the sense described above are [[#References|[a1]]] and [[#References|[a2]]]. In the Western literature, the term "Wiener integral" normally refers to the [[Stochastic integral|stochastic integral]] of a deterministic function | + | Further references on the computation of Wiener integrals in the sense described above are [[#References|[a1]]] and [[#References|[a2]]]. In the Western literature, the term "Wiener integral" normally refers to the [[Stochastic integral|stochastic integral]] of a deterministic function $ f $ |
| + | such that $ f \in L _ {2} [ 0, t] $ | ||
| + | for each $ t \in \mathbf R _ {+} $, | ||
| + | with respect to the [[Wiener process|Wiener process]] $ X( t) $ | ||
| + | defined on a probability space $ ( \Omega , {\mathcal F} , P) $. | ||
| + | This is denoted by | ||
| − | + | $$ | |
| + | I _ {t} ( f ) = \int\limits _ { 0 } ^ { t } f( s) dX( s) , | ||
| + | $$ | ||
| − | and is defined as follows. If | + | and is defined as follows. If $ f $ |
| + | is a simple function, i.e. $ f( s) = a _ {i} $ | ||
| + | for $ s \in [ t _ {t-} 1 , t _ {i} ) $, | ||
| + | where $ a _ {i} \in \mathbf R $ | ||
| + | and $ 0 = t _ {0} < t _ {1} < \dots < t _ {n} = t $, | ||
| + | then | ||
| − | + | $$ | |
| + | I _ {t} ( f ) = \sum _ { n= } 1 ^ { n } a _ {i} ( X( t _ {i} ) - | ||
| + | X( t _ {i-} 1 )) . | ||
| + | $$ | ||
| − | Let | + | Let $ S $ |
| + | denote the set of simple functions. For $ f , g \in S $, | ||
| + | a computation shows that $ {\mathsf E} I _ {t} ( f ) = 0 $, | ||
| + | $ {\mathsf E} ( I _ {t} ( f ) I _ {t} ( g)) = \int _ {0} ^ {t} f( s) g( s) ds $, | ||
| + | i.e. $ f \mapsto I _ {t} ( f ) $ | ||
| + | is an inner-product preserving mapping from $ L _ {2} [ 0, t] $ | ||
| + | to $ L _ {2} ( \Omega , {\mathcal F} , P ) $. | ||
| + | For any $ f \in L _ {2} [ 0, t] $ | ||
| + | there exists a sequence $ f _ {n} \in S $ | ||
| + | such that $ f _ {n} \rightarrow f $. | ||
| + | $ \{ I _ {t} ( f _ {n} ) \} $ | ||
| + | is then a Cauchy sequence in $ L _ {2} ( \Omega , {\mathcal F} , P) $, | ||
| + | and one defines | ||
| − | + | $$ | |
| + | \int\limits _ { 0 } ^ { t } f( s) dX( s) = \lim\limits _ {n \rightarrow \infty } I _ {t} ( f _ {n} ). | ||
| + | $$ | ||
Notable features of this construction are as follows. | Notable features of this construction are as follows. | ||
| − | It is possible to define | + | It is possible to define $ I _ {t} ( f ) $ |
| + | simultaneously for all $ t \geq 0 $ | ||
| + | and to obtain a version which is a Gaussian martingale with continuous sample paths | ||
| − | + | $$ | |
| + | \mathop{\rm sp} \{ {X ( s) } : {0 \leq s \leq t } \} | ||
| + | = \ | ||
| + | \{ {I _ {t} ( f ) } : {f \in L _ {2} [ 0, t ] } \} | ||
| + | , | ||
| + | $$ | ||
| − | where "sp" denotes the closed linear span in | + | where "sp" denotes the closed linear span in $ L _ {2} ( \Omega , {\mathcal F} , P ) $. |
| + | Information on the Wiener integral in this sense is given in [[#References|[a3]]], [[#References|[a4]]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A.J. Chorin, "Accurate evaluation of Wiener integrals" ''Math. Comp.'' , '''27''' (1973) pp. 1–15</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> G.L. Blankenschip, J.S. Baras, "Accurate evaluation of stochastic Wiener integrals with applications to scattering in random media and to nonlinear filtering" ''SIAM J. Appl. Math.'' , '''41''' (1981) pp. 518–552</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> M.H.A. Davis, "Linear estimation and stochastic control" , Chapman & Hall (1977)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> R.S. Liptser, A.N. Shiryaev, "Statistics of random processes" , '''I''' , Springer (1977) (Translated from Russian)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> J. Yeh, "Stochastic processes and the Wiener integral" , M. Dekker (1973)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> B. Simon, "Functional integration and quantum physics" , Acad. Press (1979) pp. 4–6</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> L.C.G. Rogers, D. Williams, "Diffusions, Markov processes, and martingales" , '''2. Itô calculus''' , Wiley (1987)</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top"> H. Bauer, "Probability theory and elements of measure theory" , Holt, Rinehart & Winston (1972) pp. Chapt. 11 (Translated from German)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> A.J. Chorin, "Accurate evaluation of Wiener integrals" ''Math. Comp.'' , '''27''' (1973) pp. 1–15</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> G.L. Blankenschip, J.S. Baras, "Accurate evaluation of stochastic Wiener integrals with applications to scattering in random media and to nonlinear filtering" ''SIAM J. Appl. Math.'' , '''41''' (1981) pp. 518–552</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> M.H.A. Davis, "Linear estimation and stochastic control" , Chapman & Hall (1977)</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> R.S. Liptser, A.N. Shiryaev, "Statistics of random processes" , '''I''' , Springer (1977) (Translated from Russian)</TD></TR><TR><TD valign="top">[a5]</TD> <TD valign="top"> J. Yeh, "Stochastic processes and the Wiener integral" , M. Dekker (1973)</TD></TR><TR><TD valign="top">[a6]</TD> <TD valign="top"> B. Simon, "Functional integration and quantum physics" , Acad. Press (1979) pp. 4–6</TD></TR><TR><TD valign="top">[a7]</TD> <TD valign="top"> L.C.G. Rogers, D. Williams, "Diffusions, Markov processes, and martingales" , '''2. Itô calculus''' , Wiley (1987)</TD></TR><TR><TD valign="top">[a8]</TD> <TD valign="top"> H. Bauer, "Probability theory and elements of measure theory" , Holt, Rinehart & Winston (1972) pp. Chapt. 11 (Translated from German)</TD></TR></table> | ||
Latest revision as of 08:29, 6 June 2020
An abstract integral of Lebesgue type over sets in an infinite-dimensional function space of functionals defined on these sets. Introduced by N. Wiener in the nineteentwenties in connection with problems on Brownian motion [1], [2].
Let $ C _ {0} $ be the vector space of continuous real-valued functions $ x $ defined on $ [ 0, 1] $ such that $ x( 0) = 0 $, with norm
$$ \| x \| = \max _ {t \in [ 0, 1] } | x ( t) |. $$
The set
$$ Q = \{ {x \in C _ {0} } : { a _ {i} < x ( t _ {i} ) \leq b _ {i} ,\ 0 = t _ {0} < t _ {1} < \dots < t _ {n} = 1 } \} $$
is called a quasi-interval of this space. Here, $ a _ {i} $ and $ b _ {i} $ may be equal to $ - \infty $ and $ + \infty $, respectively, but then the symbol $ < $ must replace $ \leq $. The whole space $ C _ {0} = \{ {x ( t) } : {- \infty < x ( 1) < + \infty } \} $ is an example of a quasi-interval.
The Wiener measure of a quasi-interval $ Q $ is the number
$$ \mu _ {W} ( Q) = \ { \frac{1}{\sqrt {\pi ^ {n} \prod _ { i = 1 } ^ { n } ( t _ {i} - t _ {i-} 1 ) }} } \int\limits _ { a _ 1 } ^ {b _ 1 } \dots \int\limits _ { a _ n } ^ {b _ n} e ^ {- L _ {n} } dx _ {n} \dots dx _ {1} , $$
where
$$ L _ {n} = \sum _ {j = 1 } ^ { n } \frac{( x _ {j} - x _ {j-} 1 ) ^ {2} }{t _ {j} - t _ {j-} 1 } $$
and $ x _ {j} = x ( t _ {j} ) $. This measure extends to a $ \sigma $- additive measure on the Borel field of sets generated by the quasi-intervals, known also as Wiener measure.
Let $ F $ be a functional defined on $ C _ {0} $ that is measurable with respect to the measure $ \mu _ {W} $. The Lebesgue-type integral
$$ \int\limits _ { C _ 0 } F ( x) d \mu _ {W} ( x) $$
is known as the Wiener integral, or as the integral with respect to the Wiener measure, of the functional $ F $. If $ E \subset C _ {0} $ is measurable, then
$$ \int\limits _ { E } F ( x) d \mu _ {W} ( x) = \ \int\limits _ { C _ 0 } F ( x) \chi _ {E} ( x) d \mu _ {W} ( x) , $$
where $ \chi _ {E} $ is the characteristic function of the set $ E $.
Wiener's integral displays several properties of the ordinary Lebesgue integral. In particular, a functional which is bounded and measurable on a set $ E $ is integrable with respect to the Wiener measure on this set and if, in addition, the functional $ F $ is continuous and non-negative, then
$$ \int\limits _ { C _ 0 } F ( x) d \mu _ {W} ( x) = $$
$$ = \ \lim\limits _ {n \rightarrow \infty } \frac{1}{\sqrt { {\pi ^ {n} \prod _ {i = 1 } ^ { n } ( t _ {i} - t _ {i-} 1 ) } }} \int\limits _ { \mathbf R } ^ {n} \frac{F _ {n} ( x _ {1} \dots x _ {n} ) }{e ^ {L} _ {n} } dx _ {1} \dots dx _ {n} , $$
where $ F _ {n} ( x _ {1} \dots x _ {n} ) $ is the value of $ F $ at linear interpolation of $ x( t) $ between points $ ( t _ {i} , x _ {i} \equiv x( t _ {i} )) $.
The computation of a Wiener integral presents considerable difficulties, even for the simplest functionals. The task may sometimes be reduced to solving a single differential equation [1].
There is a method by which Wiener's integral may be approximately computed through approximating it by finite-dimensional Stieltjes integrals of a high multiplicity (cf. Stieltjes integral).
References
| [1] | I.M. Koval'chik, "The Wiener integral" Russian Math. Surveys , 18 : 1 (1963) pp. 97–134 Uspekhi Mat. Nauk , 18 : 1 (1963) pp. 97–134 |
| [2] | G.E. Shilov, "Integration in infinite dimensional spaces and the Wiener integral" Russ. Math. Surveys , 18 : 2 (1963) pp. 99–120 Uspekhi Mat. Nauk , 2 (1963) pp. 99–120 |
Comments
Further references on the computation of Wiener integrals in the sense described above are [a1] and [a2]. In the Western literature, the term "Wiener integral" normally refers to the stochastic integral of a deterministic function $ f $ such that $ f \in L _ {2} [ 0, t] $ for each $ t \in \mathbf R _ {+} $, with respect to the Wiener process $ X( t) $ defined on a probability space $ ( \Omega , {\mathcal F} , P) $. This is denoted by
$$ I _ {t} ( f ) = \int\limits _ { 0 } ^ { t } f( s) dX( s) , $$
and is defined as follows. If $ f $ is a simple function, i.e. $ f( s) = a _ {i} $ for $ s \in [ t _ {t-} 1 , t _ {i} ) $, where $ a _ {i} \in \mathbf R $ and $ 0 = t _ {0} < t _ {1} < \dots < t _ {n} = t $, then
$$ I _ {t} ( f ) = \sum _ { n= } 1 ^ { n } a _ {i} ( X( t _ {i} ) - X( t _ {i-} 1 )) . $$
Let $ S $ denote the set of simple functions. For $ f , g \in S $, a computation shows that $ {\mathsf E} I _ {t} ( f ) = 0 $, $ {\mathsf E} ( I _ {t} ( f ) I _ {t} ( g)) = \int _ {0} ^ {t} f( s) g( s) ds $, i.e. $ f \mapsto I _ {t} ( f ) $ is an inner-product preserving mapping from $ L _ {2} [ 0, t] $ to $ L _ {2} ( \Omega , {\mathcal F} , P ) $. For any $ f \in L _ {2} [ 0, t] $ there exists a sequence $ f _ {n} \in S $ such that $ f _ {n} \rightarrow f $. $ \{ I _ {t} ( f _ {n} ) \} $ is then a Cauchy sequence in $ L _ {2} ( \Omega , {\mathcal F} , P) $, and one defines
$$ \int\limits _ { 0 } ^ { t } f( s) dX( s) = \lim\limits _ {n \rightarrow \infty } I _ {t} ( f _ {n} ). $$
Notable features of this construction are as follows.
It is possible to define $ I _ {t} ( f ) $ simultaneously for all $ t \geq 0 $ and to obtain a version which is a Gaussian martingale with continuous sample paths
$$ \mathop{\rm sp} \{ {X ( s) } : {0 \leq s \leq t } \} = \ \{ {I _ {t} ( f ) } : {f \in L _ {2} [ 0, t ] } \} , $$
where "sp" denotes the closed linear span in $ L _ {2} ( \Omega , {\mathcal F} , P ) $. Information on the Wiener integral in this sense is given in [a3], [a4].
References
| [a1] | A.J. Chorin, "Accurate evaluation of Wiener integrals" Math. Comp. , 27 (1973) pp. 1–15 |
| [a2] | G.L. Blankenschip, J.S. Baras, "Accurate evaluation of stochastic Wiener integrals with applications to scattering in random media and to nonlinear filtering" SIAM J. Appl. Math. , 41 (1981) pp. 518–552 |
| [a3] | M.H.A. Davis, "Linear estimation and stochastic control" , Chapman & Hall (1977) |
| [a4] | R.S. Liptser, A.N. Shiryaev, "Statistics of random processes" , I , Springer (1977) (Translated from Russian) |
| [a5] | J. Yeh, "Stochastic processes and the Wiener integral" , M. Dekker (1973) |
| [a6] | B. Simon, "Functional integration and quantum physics" , Acad. Press (1979) pp. 4–6 |
| [a7] | L.C.G. Rogers, D. Williams, "Diffusions, Markov processes, and martingales" , 2. Itô calculus , Wiley (1987) |
| [a8] | H. Bauer, "Probability theory and elements of measure theory" , Holt, Rinehart & Winston (1972) pp. Chapt. 11 (Translated from German) |
Wiener integral. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Wiener_integral&oldid=17004