Namespaces
Variants
Actions

Difference between revisions of "Whitney mapping"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (link)
m (tex encoded by computer)
 
Line 1: Line 1:
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110040/w1100401.png" /> be a compact [[Hausdorff space|Hausdorff space]]. The [[hyperspace]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110040/w1100402.png" /> is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110040/w1100403.png" />; the subspace of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110040/w1100404.png" />, consisting of all sub-continua of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110040/w1100405.png" /> is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110040/w1100406.png" />. A Whitney mapping of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110040/w1100407.png" /> is a real-valued continuous function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110040/w1100408.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110040/w1100409.png" /> (or on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110040/w11004010.png" />) with the following properties:
+
<!--
 +
w1100401.png
 +
$#A+1 = 45 n = 0
 +
$#C+1 = 45 : ~/encyclopedia/old_files/data/W110/W.1100040 Whitney mapping
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110040/w11004011.png" /> for each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110040/w11004012.png" />;
+
{{TEX|auto}}
 +
{{TEX|done}}
  
2) if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110040/w11004013.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110040/w11004014.png" /> are in the domain of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110040/w11004015.png" /> and if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110040/w11004016.png" /> is a proper subset of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110040/w11004017.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110040/w11004018.png" />.
+
Let  $  X $
 +
be a compact [[Hausdorff space|Hausdorff space]]. The [[hyperspace]] of  $  X $
 +
is denoted by  $  2  ^ {X} $;
 +
the subspace of  $  2 ^ {X} $,
 +
consisting of all sub-continua of  $  X $
 +
is denoted by  $  C ( X ) $.  
 +
A Whitney mapping of $  X $
 +
is a real-valued continuous function  $  w $
 +
on  $  2  ^ {X} $(
 +
or on  $  C ( X ) $)
 +
with the following properties:
  
A set of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110040/w11004019.png" />, for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110040/w11004020.png" />, is called a Whitney level.
+
1)  $  w ( \{ x \} ) = 0 $
 +
for each  $  x \in X $;
  
The existence of a Whitney function on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110040/w11004021.png" /> implies that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110040/w11004022.png" /> is a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110040/w11004023.png" />-subset of its hyperspace, which in turn implies that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110040/w11004024.png" /> is metrizable (cf. also [[Metrizable space|Metrizable space]]). One of the simplest constructions of a Whitney mapping for a compact metrizable space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110040/w11004025.png" /> is as follows. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110040/w11004026.png" /> be a countable open base of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110040/w11004027.png" />, and, for each pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110040/w11004028.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110040/w11004029.png" />, fix a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110040/w11004030.png" /> which equals <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110040/w11004031.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110040/w11004032.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110040/w11004033.png" /> outside <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110040/w11004034.png" />. Enumerate these functions as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110040/w11004035.png" /> and let
+
2) if  $  A $
 +
and  $  B $
 +
are in the domain of w $
 +
and if  $  A $
 +
is a proper subset of $  B $,  
 +
then  $  w ( A ) < w ( B ) $.
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110040/w11004036.png" /></td> </tr></table>
+
A set of type  $  w ^ {- 1 } ( t ) $,
 +
for  $  0 \leq  t < w ( tX ) $,
 +
is called a Whitney level.
  
Below it is assumed that all spaces are metric continua. Whitney functions have been developed as a fundamental tool in continua theory. Their first use in this context was involved with order arcs in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110040/w11004037.png" />, and led to a proof that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110040/w11004038.png" /> is acyclic and that both <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110040/w11004039.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110040/w11004040.png" /> are even contractible if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110040/w11004041.png" /> is Peanian (1942). Later on they became a subject of study in their own right.
+
The existence of a Whitney function on  $  2  ^ {X} $
 +
implies that  $  X $
 +
is a  $  G _  \delta  $-
 +
subset of its hyperspace, which in turn implies that $  X $
 +
is metrizable (cf. also [[Metrizable space|Metrizable space]]). One of the simplest constructions of a Whitney mapping for a compact metrizable space  $  X $
 +
is as follows. Let  $  {\mathcal O} $
 +
be a countable open base of  $  X $,
 +
and, for each pair  $  U,V \in {\mathcal O} $
 +
such that  $  { \mathop{\rm Cl} } ( U ) \subseteq V $,  
 +
fix a mapping  $  f : X \rightarrow {[0,1] } $
 +
which equals  $  0 $
 +
on  $  U $
 +
and $  1 $
 +
outside  $  V $.  
 +
Enumerate these functions as  $  ( f _ {n} ) _ {n = 1 }  ^  \infty  $
 +
and let
  
A Whitney property is a topological property <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110040/w11004042.png" /> such that if a metric continuum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110040/w11004043.png" /> has <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110040/w11004044.png" />, then so does each Whitney level of it in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/w/w110/w110040/w11004045.png" />. Examples are: being a (locally connected) continuum; being a hereditarily indecomposable continuum; being a (pseudo-) arc or a circle; etc. Counterexamples are: being contractible; being acyclic in Alexander–Čech cohomology; being homogeneous; being a Hilbert cube.
+
$$
 +
w ( A ) = \sum _ {n = 1 } ^  \infty  2 ^ {- n } { \mathop{\rm diam} } f _ {n} ( A ) .
 +
$$
 +
 
 +
Below it is assumed that all spaces are metric continua. Whitney functions have been developed as a fundamental tool in continua theory. Their first use in this context was involved with order arcs in  $  2  ^ {X} $,
 +
and led to a proof that  $  2  ^ {X} $
 +
is acyclic and that both  $  C ( X ) $
 +
and  $  2  ^ {X} $
 +
are even contractible if  $  X $
 +
is Peanian (1942). Later on they became a subject of study in their own right.
 +
 
 +
A Whitney property is a topological property $  {\mathcal P} $
 +
such that if a metric continuum $  X $
 +
has $  {\mathcal P} $,  
 +
then so does each Whitney level of it in $  C ( X ) $.  
 +
Examples are: being a (locally connected) continuum; being a hereditarily indecomposable continuum; being a (pseudo-) arc or a circle; etc. Counterexamples are: being contractible; being acyclic in Alexander–Čech cohomology; being homogeneous; being a Hilbert cube.
  
 
Whitney functions were introduced by H. Whitney [[#References|[a4]]] in 1933 in a different context. They were first used by J.L. Kelley [[#References|[a2]]] to study hyperspaces. Every metric continuum can occur as a Whitney level [[#References|[a1]]]. For an account of continua theory see [[#References|[a3]]].
 
Whitney functions were introduced by H. Whitney [[#References|[a4]]] in 1933 in a different context. They were first used by J.L. Kelley [[#References|[a2]]] to study hyperspaces. Every metric continuum can occur as a Whitney level [[#References|[a1]]]. For an account of continua theory see [[#References|[a3]]].

Latest revision as of 08:29, 6 June 2020


Let $ X $ be a compact Hausdorff space. The hyperspace of $ X $ is denoted by $ 2 ^ {X} $; the subspace of $ 2 ^ {X} $, consisting of all sub-continua of $ X $ is denoted by $ C ( X ) $. A Whitney mapping of $ X $ is a real-valued continuous function $ w $ on $ 2 ^ {X} $( or on $ C ( X ) $) with the following properties:

1) $ w ( \{ x \} ) = 0 $ for each $ x \in X $;

2) if $ A $ and $ B $ are in the domain of $ w $ and if $ A $ is a proper subset of $ B $, then $ w ( A ) < w ( B ) $.

A set of type $ w ^ {- 1 } ( t ) $, for $ 0 \leq t < w ( tX ) $, is called a Whitney level.

The existence of a Whitney function on $ 2 ^ {X} $ implies that $ X $ is a $ G _ \delta $- subset of its hyperspace, which in turn implies that $ X $ is metrizable (cf. also Metrizable space). One of the simplest constructions of a Whitney mapping for a compact metrizable space $ X $ is as follows. Let $ {\mathcal O} $ be a countable open base of $ X $, and, for each pair $ U,V \in {\mathcal O} $ such that $ { \mathop{\rm Cl} } ( U ) \subseteq V $, fix a mapping $ f : X \rightarrow {[0,1] } $ which equals $ 0 $ on $ U $ and $ 1 $ outside $ V $. Enumerate these functions as $ ( f _ {n} ) _ {n = 1 } ^ \infty $ and let

$$ w ( A ) = \sum _ {n = 1 } ^ \infty 2 ^ {- n } { \mathop{\rm diam} } f _ {n} ( A ) . $$

Below it is assumed that all spaces are metric continua. Whitney functions have been developed as a fundamental tool in continua theory. Their first use in this context was involved with order arcs in $ 2 ^ {X} $, and led to a proof that $ 2 ^ {X} $ is acyclic and that both $ C ( X ) $ and $ 2 ^ {X} $ are even contractible if $ X $ is Peanian (1942). Later on they became a subject of study in their own right.

A Whitney property is a topological property $ {\mathcal P} $ such that if a metric continuum $ X $ has $ {\mathcal P} $, then so does each Whitney level of it in $ C ( X ) $. Examples are: being a (locally connected) continuum; being a hereditarily indecomposable continuum; being a (pseudo-) arc or a circle; etc. Counterexamples are: being contractible; being acyclic in Alexander–Čech cohomology; being homogeneous; being a Hilbert cube.

Whitney functions were introduced by H. Whitney [a4] in 1933 in a different context. They were first used by J.L. Kelley [a2] to study hyperspaces. Every metric continuum can occur as a Whitney level [a1]. For an account of continua theory see [a3].

References

[a1] W.J. Charatonik, "Continua as positive Whitney levels" Proc. Amer. Math. Soc. , 118 (1993) pp. 1351–1352
[a2] J.L. Kelley, "Hyperspaces of a continuum" Trans. Amer. Math. Soc. , 52 (1942) pp. 22–36
[a3] S.B. Nadler, "Hyperspaces of sets" , M. Dekker (1978)
[a4] H. Whitney, "Regular families of curves" Ann. of Math. , 2 (1933) pp. 244–270
How to Cite This Entry:
Whitney mapping. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Whitney_mapping&oldid=42892
This article was adapted from an original article by M. van de Vel (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article