Namespaces
Variants
Actions

Difference between revisions of "Unitary operator"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A [[Linear operator|linear operator]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095560/u0955601.png" /> mapping a normed linear space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095560/u0955602.png" /> onto a normed linear space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095560/u0955603.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095560/u0955604.png" />. The most important unitary operators are those mapping a Hilbert space onto itself. Such an operator is unitary if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095560/u0955605.png" /> for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095560/u0955606.png" />. Other characterizations of a unitary operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095560/u0955607.png" /> are: 1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095560/u0955608.png" />, i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095560/u0955609.png" />; and 2) the spectrum of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095560/u09556010.png" /> lies on the unit circle and there is the spectral decomposition <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095560/u09556011.png" />. The set of unitary operators acting on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095560/u09556012.png" /> forms a group.
+
<!--
 +
u0955601.png
 +
$#A+1 = 13 n = 0
 +
$#C+1 = 13 : ~/encyclopedia/old_files/data/U095/U.0905560 Unitary operator
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
Examples of unitary operators and their inverses on the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/u/u095/u095560/u09556013.png" /> are the [[Fourier transform|Fourier transform]] and its inverse.
+
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
A [[Linear operator|linear operator]]  $  U $
 +
mapping a normed linear space  $  X $
 +
onto a normed linear space  $  Y $
 +
such that  $  \| Ux \| _ {Y} = \| x \| _ {X} $.
 +
The most important unitary operators are those mapping a Hilbert space onto itself. Such an operator is unitary if and only if  $  ( x, y) = ( Ux, Uy) $
 +
for all  $  x, y \in X $.
 +
Other characterizations of a unitary operator  $  U:  H \rightarrow ^ {\textrm{ onto } } H $
 +
are: 1)  $  U  ^ {*} U = UU  ^ {*} = I $,
 +
i.e.  $  U  ^ {-} 1 = U  ^ {*} $;
 +
and 2) the spectrum of  $  U $
 +
lies on the unit circle and there is the spectral decomposition  $  U = \int _ {0} ^ {2 \pi } e ^ {i \phi }  dE _  \phi  $.
 +
The set of unitary operators acting on  $  H $
 +
forms a group.
 +
 
 +
Examples of unitary operators and their inverses on the space $  L _ {2} (- \infty , \infty ) $
 +
are the [[Fourier transform|Fourier transform]] and its inverse.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  F. Riesz,  B. Szökefalvi-Nagy,  "Functional analysis" , F. Ungar  (1955)  (Translated from French)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  N.I. Akhiezer,  I.M. Glazman,  "Theory of linear operators in Hilbert space" , '''1''' , Pitman  (1980)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  A.I. Plessner,  "Spectral theory of linear operators" , F. Ungar  (1965)  (Translated from Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  F. Riesz,  B. Szökefalvi-Nagy,  "Functional analysis" , F. Ungar  (1955)  (Translated from French)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  N.I. Akhiezer,  I.M. Glazman,  "Theory of linear operators in Hilbert space" , '''1''' , Pitman  (1980)  (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  A.I. Plessner,  "Spectral theory of linear operators" , F. Ungar  (1965)  (Translated from Russian)</TD></TR></table>

Latest revision as of 08:27, 6 June 2020


A linear operator $ U $ mapping a normed linear space $ X $ onto a normed linear space $ Y $ such that $ \| Ux \| _ {Y} = \| x \| _ {X} $. The most important unitary operators are those mapping a Hilbert space onto itself. Such an operator is unitary if and only if $ ( x, y) = ( Ux, Uy) $ for all $ x, y \in X $. Other characterizations of a unitary operator $ U: H \rightarrow ^ {\textrm{ onto } } H $ are: 1) $ U ^ {*} U = UU ^ {*} = I $, i.e. $ U ^ {-} 1 = U ^ {*} $; and 2) the spectrum of $ U $ lies on the unit circle and there is the spectral decomposition $ U = \int _ {0} ^ {2 \pi } e ^ {i \phi } dE _ \phi $. The set of unitary operators acting on $ H $ forms a group.

Examples of unitary operators and their inverses on the space $ L _ {2} (- \infty , \infty ) $ are the Fourier transform and its inverse.

References

[1] F. Riesz, B. Szökefalvi-Nagy, "Functional analysis" , F. Ungar (1955) (Translated from French)
[2] N.I. Akhiezer, I.M. Glazman, "Theory of linear operators in Hilbert space" , 1 , Pitman (1980) (Translated from Russian)
[3] A.I. Plessner, "Spectral theory of linear operators" , F. Ungar (1965) (Translated from Russian)
How to Cite This Entry:
Unitary operator. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Unitary_operator&oldid=14352
This article was adapted from an original article by V.I. Sobolev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article