Difference between revisions of "Topological entropy"
(→References: expand bibliodata) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | t0930401.png | ||
+ | $#A+1 = 53 n = 0 | ||
+ | $#C+1 = 53 : ~/encyclopedia/old_files/data/T093/T.0903040 Topological entropy | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A concept in [[Topological dynamics|topological dynamics]] and [[Ergodic theory|ergodic theory]] analogous to the [[Metric entropy|metric entropy]] of dynamical systems (introduced in [[#References|[1]]]). For an open covering $ \mathfrak A $ | |
+ | of a compactum $ X $, | ||
+ | let $ H ( \mathfrak A ) $ | ||
+ | denote the logarithm (usually to base 2) of the smallest number of elements of the covering that can cover $ X $. | ||
+ | If $ S: X \rightarrow X $ | ||
+ | is a continuous mapping, then the limit | ||
− | + | $$ | |
+ | h ( S, \mathfrak A ) = \ | ||
+ | \lim\limits _ {n \rightarrow \infty } \ | ||
+ | { | ||
+ | \frac{1}{n} | ||
+ | } H | ||
+ | ( \mathfrak A \lor S ^ {-} 1 | ||
+ | \mathfrak A \lor \dots \lor | ||
+ | S ^ {- n + 1 } \mathfrak A ) | ||
+ | $$ | ||
− | where | + | exists, where $ \mathfrak A \lor \mathfrak B $ |
+ | is the covering whose elements are all the non-empty intersections of the elements of $ \mathfrak A $ | ||
+ | and $ \mathfrak B $. | ||
+ | The topological entropy $ h _ { \mathop{\rm top} } ( S) $ | ||
+ | is defined to be the supremum of $ h ( S, \mathfrak A ) $ | ||
+ | over all possible $ \mathfrak A $. | ||
+ | There is an equivalent definition in the metric case: For a metric $ \rho $, | ||
+ | let $ K _ \epsilon ( X, \rho ) $ | ||
+ | denote the largest number of points of $ X $ | ||
+ | with pairwise distance greater than $ \epsilon $. | ||
+ | Then | ||
+ | |||
+ | $$ | ||
+ | h _ { \mathop{\rm top} } ( S) = \ | ||
+ | \lim\limits _ {\epsilon \rightarrow 0 } \ | ||
+ | \lim\limits _ {n \rightarrow \infty } \ | ||
+ | { | ||
+ | \frac{1}{n} | ||
+ | } \mathop{\rm log} \ | ||
+ | K _ \epsilon ( X, \rho _ {n} ), | ||
+ | $$ | ||
+ | |||
+ | where $ \rho _ {n} ( x, y) = \max _ {0 \leq i \leq n } \rho ( S ^ {i} x, S ^ {i} y) $( | ||
+ | cf. [[#References|[2]]]–[[#References|[4]]]). | ||
It turns out that | It turns out that | ||
− | + | $$ | |
+ | h _ { \mathop{\rm top} } ( S ^ {n} ) = \ | ||
+ | n h _ { \mathop{\rm top} } ( S), | ||
+ | $$ | ||
− | and if | + | and if $ S $ |
+ | is a homeomorphism, then $ h _ { \mathop{\rm top} } ( S ^ {-} 1 ) = h _ { \mathop{\rm top} } ( S) $. | ||
+ | Hence it is natural to take the topological entropy of a [[Cascade|cascade]] $ \{ S ^ {n} \} $ | ||
+ | to be $ h _ { \mathop{\rm top} } ( S) $. | ||
+ | For a topological [[Flow (continuous-time dynamical system)|flow (continuous-time dynamical system)]] $ \{ S _ {t} \} $ | ||
+ | it turns out that | ||
− | + | $$ | |
+ | h _ { \mathop{\rm top} } ( S _ {t} ) = \ | ||
+ | | t | h _ { \mathop{\rm top} } ( S _ {1} ), | ||
+ | $$ | ||
− | so it is natural to take the topological entropy of the flow to be | + | so it is natural to take the topological entropy of the flow to be $ h _ { \mathop{\rm top} } ( S _ {1} ) $. |
+ | In a somewhat different way one can define the topological entropy for other transformation groups (it no longer reduces to the topological entropy of one of the elements of the group; cf. ). | ||
− | The topological entropy | + | The topological entropy $ h _ { \mathop{\rm top} } ( S) $ |
+ | coincides with the supremum of the metric entropy $ h _ \mu ( S) $ | ||
+ | over all possible normalized invariant Borel measures $ \mu $( | ||
+ | cf. [[#References|[2]]], [[#References|[5]]]–; | ||
− | for the existence of | + | for the existence of $ \max h _ \mu $ |
+ | and the dependence of $ h _ { \mathop{\rm top} } ( S) $ | ||
+ | on $ S $). | ||
+ | This is a special case of the variational principle, which establishes a topological interpretation of the value | ||
− | + | $$ | |
+ | \sup _ \mu \left [ h _ \mu ( S) + \int\limits f d \mu \right ] | ||
+ | $$ | ||
− | for a fixed continuous function | + | for a fixed continuous function $ f $( |
+ | cf. [[#References|[4]]], [[#References|[8]]], [[#References|[9]]]). The topological entropy gives a characteristic of the "complexity" or "diversity" of motions in a dynamical system (cf. [[#References|[10]]], [[#References|[3]]], [[#References|[4]]]). It is also connected in certain cases with the asymptotics (as $ T \rightarrow \infty $) | ||
+ | of the number of periodic trajectories (of period $ \leq T $; | ||
+ | cf. [[Periodic trajectory|Periodic trajectory]] and [[#References|[3]]], [[#References|[4]]], –[[#References|[13]]]). The "entropy conjecture54C70entropy conjecture" asserts that the topological entropy of a diffeomorphism $ S $ | ||
+ | of a closed manifold $ W $ | ||
+ | is not less than the logarithm of the [[Spectral radius|spectral radius]] of the linear transformation induced by $ S $ | ||
+ | on the homology spaces $ H _ {*} ( W; \mathbf R ) $( | ||
+ | cf. , [[#References|[15]]]). It has been proved in the $ C ^ \infty $- | ||
+ | case, . | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> R.L. Adler, A.G. Konheim, M.H. McAndrew, "Topological entropy" ''Trans. Amer. Math. Soc.'' , '''114''' (1965) pp. 309–319</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> E.I. Dinaburg, "On the relation between various entropy characteristics of dynamical systems" ''Math. USSR Izv.'' , '''5''' : 2 (1971) pp. 337–378 ''Izv. Akad. Nauk SSSR, Ser. Mat.'' , '''35''' : 2 (1971) pp. 324–366</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> V.M. Alekseev, "Symbolic dynamics" , ''Eleventh Mathematical Summer School'' , Kiev (1976) pp. 5–210 (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> R. Boywen, "Methods of symbolic dynamics" , Moscow (1979) (In Russian; translated from English) (Collection of papers)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> T.N.T. Goodman, "Relating topological entropy and measure entropy" ''Bull. London Math. Soc.'' , '''3''' (1971) pp. 176–180</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> L.W. Goodwyn, "Comparing topological entropy with measure-theoretic entropy" ''Amer. J. Math.'' , '''94''' (1972) pp. 366–368</TD></TR><TR><TD valign="top">[7a]</TD> <TD valign="top"> A.T. Tagi-zade, "The entropy of motions of amenable groups" ''Dokl. Akad. Nauk AzerbSSR'' , '''34''' : 6 (1978) pp. 18–22 (In Russian)</TD></TR><TR><TD valign="top">[7b]</TD> <TD valign="top"> A.T. Tagi-zade, "Entropy characteristics of amenable groups" ''Dokl. Akad. Nauk AzerbSSR'' , '''34''' : 8 (1978) pp. 11–14 (In Russian)</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> A.M. Stepin, A.T. Tagi-zade, "Variational characterization of the topological pressure of amenable transformation groups" ''Soviet Math. Dokl.'' , '''22''' : 2 (1980) pp. 405–409 ''Dokl. Akad. Nauk SSSR'' , '''254''' : 3 (1980) pp. 545–548</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top"> J. Moulin Ollagnier, D. Pinchon, "The variational principle" ''Studia Math.'' , '''72''' (1982) pp. 151–159</TD></TR><TR><TD valign="top">[10]</TD> <TD valign="top"> A.A. Brudno, "Entropy and the complexity of the trajectories of a dynamical system" ''Trans. Moscow Math. Soc.'' , '''44''' (1982) pp. 127–152 ''Trudy Moskov. Mat. Obshch.'' , '''44''' (1982) pp. 124–149</TD></TR><TR><TD valign="top">[11a]</TD> <TD valign="top"> A.G. Kushnirenko, "Problems in the general theory of dynamical systems on a manifold" ''Transl. Amer. Math. Soc.'' , '''116''' (1981) pp. 1–42 ''Ninth Math. Summer School'' (1976) pp. 52–124</TD></TR><TR><TD valign="top">[11b]</TD> <TD valign="top"> A.B. Katok, "Dynamical systems with hyperbolic structure" ''Transl. Amer. Math. Soc.'' , '''116''' (1981) pp. 43–96 ''Ninth Math. Summer School'' (1976) pp. 125–211</TD></TR><TR><TD valign="top">[11c]</TD> <TD valign="top"> V.M. Alekseev, "Quasirandom oscillations and qualitative questions in celestial mechanics" ''Transl. Amer. Math. Soc.'' , '''116''' (1981) pp. 97–169 ''Ninth Math. Summer School'' (1976) pp. 212–341</TD></TR><TR><TD valign="top">[12]</TD> <TD valign="top"> A.B. Katok, Ya.G. Sinai, A.M. Stepin, "The theory of dynamical systems and general transformation groups with invariant measure" ''J. Soviet Math.'' , '''7''' : 6 (1977) pp. 974–1065 ''Itogi Nauk. i Tekhn. Mat. Anal.'' , '''13''' (1975) pp. 129–262</TD></TR><TR><TD valign="top">[13]</TD> <TD valign="top"> A.B. Katok, "Lyapunov exponents, entropy and periodic orbits for diffeomorphisms" ''Publ. Math. IHES'' , '''51''' (1980) pp. 137–173</TD></TR><TR><TD valign="top">[14a]</TD> <TD valign="top"> A.B. Katok, "The entropy conjecture" D.V. Anosov (ed.) , ''Smooth dynamical systems'' , Moscow (1977) pp. 181–203 (In Russian)</TD></TR><TR><TD valign="top">[14b]</TD> <TD valign="top"> M. Shub, "Dynamical systems, filtrations and entropy" ''Bull. Amer. Math. Soc.'' , '''80''' (1974) pp. 27–41</TD></TR><TR><TD valign="top">[15]</TD> <TD valign="top"> D. Fried, M. Shub, "Entropy, linearity and chain-recurrence" ''Publ. Math. IHES'' , '''50''' (1979) pp. 203–214</TD></TR><TR><TD valign="top">[16]</TD> <TD valign="top"> C. Grilleneberger, "Ergodic theory on compact spaces" , Springer (1976)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> R.L. Adler, A.G. Konheim, M.H. McAndrew, "Topological entropy" ''Trans. Amer. Math. Soc.'' , '''114''' (1965) pp. 309–319</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> E.I. Dinaburg, "On the relation between various entropy characteristics of dynamical systems" ''Math. USSR Izv.'' , '''5''' : 2 (1971) pp. 337–378 ''Izv. Akad. Nauk SSSR, Ser. Mat.'' , '''35''' : 2 (1971) pp. 324–366</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> V.M. Alekseev, "Symbolic dynamics" , ''Eleventh Mathematical Summer School'' , Kiev (1976) pp. 5–210 (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> R. Boywen, "Methods of symbolic dynamics" , Moscow (1979) (In Russian; translated from English) (Collection of papers)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> T.N.T. Goodman, "Relating topological entropy and measure entropy" ''Bull. London Math. Soc.'' , '''3''' (1971) pp. 176–180</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> L.W. Goodwyn, "Comparing topological entropy with measure-theoretic entropy" ''Amer. J. Math.'' , '''94''' (1972) pp. 366–368</TD></TR><TR><TD valign="top">[7a]</TD> <TD valign="top"> A.T. Tagi-zade, "The entropy of motions of amenable groups" ''Dokl. Akad. Nauk AzerbSSR'' , '''34''' : 6 (1978) pp. 18–22 (In Russian)</TD></TR><TR><TD valign="top">[7b]</TD> <TD valign="top"> A.T. Tagi-zade, "Entropy characteristics of amenable groups" ''Dokl. Akad. Nauk AzerbSSR'' , '''34''' : 8 (1978) pp. 11–14 (In Russian)</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> A.M. Stepin, A.T. Tagi-zade, "Variational characterization of the topological pressure of amenable transformation groups" ''Soviet Math. Dokl.'' , '''22''' : 2 (1980) pp. 405–409 ''Dokl. Akad. Nauk SSSR'' , '''254''' : 3 (1980) pp. 545–548</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top"> J. Moulin Ollagnier, D. Pinchon, "The variational principle" ''Studia Math.'' , '''72''' (1982) pp. 151–159</TD></TR><TR><TD valign="top">[10]</TD> <TD valign="top"> A.A. Brudno, "Entropy and the complexity of the trajectories of a dynamical system" ''Trans. Moscow Math. Soc.'' , '''44''' (1982) pp. 127–152 ''Trudy Moskov. Mat. Obshch.'' , '''44''' (1982) pp. 124–149</TD></TR><TR><TD valign="top">[11a]</TD> <TD valign="top"> A.G. Kushnirenko, "Problems in the general theory of dynamical systems on a manifold" ''Transl. Amer. Math. Soc.'' , '''116''' (1981) pp. 1–42 ''Ninth Math. Summer School'' (1976) pp. 52–124</TD></TR><TR><TD valign="top">[11b]</TD> <TD valign="top"> A.B. Katok, "Dynamical systems with hyperbolic structure" ''Transl. Amer. Math. Soc.'' , '''116''' (1981) pp. 43–96 ''Ninth Math. Summer School'' (1976) pp. 125–211</TD></TR><TR><TD valign="top">[11c]</TD> <TD valign="top"> V.M. Alekseev, "Quasirandom oscillations and qualitative questions in celestial mechanics" ''Transl. Amer. Math. Soc.'' , '''116''' (1981) pp. 97–169 ''Ninth Math. Summer School'' (1976) pp. 212–341</TD></TR><TR><TD valign="top">[12]</TD> <TD valign="top"> A.B. Katok, Ya.G. Sinai, A.M. Stepin, "The theory of dynamical systems and general transformation groups with invariant measure" ''J. Soviet Math.'' , '''7''' : 6 (1977) pp. 974–1065 ''Itogi Nauk. i Tekhn. Mat. Anal.'' , '''13''' (1975) pp. 129–262</TD></TR><TR><TD valign="top">[13]</TD> <TD valign="top"> A.B. Katok, "Lyapunov exponents, entropy and periodic orbits for diffeomorphisms" ''Publ. Math. IHES'' , '''51''' (1980) pp. 137–173</TD></TR><TR><TD valign="top">[14a]</TD> <TD valign="top"> A.B. Katok, "The entropy conjecture" D.V. Anosov (ed.) , ''Smooth dynamical systems'' , Moscow (1977) pp. 181–203 (In Russian)</TD></TR><TR><TD valign="top">[14b]</TD> <TD valign="top"> M. Shub, "Dynamical systems, filtrations and entropy" ''Bull. Amer. Math. Soc.'' , '''80''' (1974) pp. 27–41</TD></TR><TR><TD valign="top">[15]</TD> <TD valign="top"> D. Fried, M. Shub, "Entropy, linearity and chain-recurrence" ''Publ. Math. IHES'' , '''50''' (1979) pp. 203–214</TD></TR><TR><TD valign="top">[16]</TD> <TD valign="top"> C. Grilleneberger, "Ergodic theory on compact spaces" , Springer (1976)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
Instead of the collection of translations [[#References|[4]]] one may consult [[#References|[a2]]]. | Instead of the collection of translations [[#References|[4]]] one may consult [[#References|[a2]]]. | ||
− | In the above, | + | In the above, $ h _ \mu ( S) $ |
+ | denotes the entropy of $ S $ | ||
+ | with respect to the normalized invariant Borel measure $ \mu $( | ||
+ | cf. [[Entropy theory of a dynamical system|Entropy theory of a dynamical system]]). The value $ P _ {S} ( f ) = \sup _ \mu [ h _ \mu ( S) + \int f d \mu ] $, | ||
+ | where $ \mu $ | ||
+ | runs over the set of all normalized invariant Borel measures, is called the pressure of $ f $( | ||
+ | with respect to $ S $). | ||
+ | If $ \mu $ | ||
+ | satisfies $ h _ \mu ( S) + \int f d \mu = P _ {S} ( f ) $( | ||
+ | i.e., the sup is a max), then $ \mu $ | ||
+ | is called an equilibrium state or Gibbs measure for $ f $( | ||
+ | with respect to $ S $). | ||
+ | See [[#References|[a2]]], also for existence and uniqueness results. | ||
For recent results about the estimation of topological entropy, see [[#References|[a1]]] and the references given there. | For recent results about the estimation of topological entropy, see [[#References|[a1]]] and the references given there. |
Revision as of 08:25, 6 June 2020
A concept in topological dynamics and ergodic theory analogous to the metric entropy of dynamical systems (introduced in [1]). For an open covering $ \mathfrak A $
of a compactum $ X $,
let $ H ( \mathfrak A ) $
denote the logarithm (usually to base 2) of the smallest number of elements of the covering that can cover $ X $.
If $ S: X \rightarrow X $
is a continuous mapping, then the limit
$$ h ( S, \mathfrak A ) = \ \lim\limits _ {n \rightarrow \infty } \ { \frac{1}{n} } H ( \mathfrak A \lor S ^ {-} 1 \mathfrak A \lor \dots \lor S ^ {- n + 1 } \mathfrak A ) $$
exists, where $ \mathfrak A \lor \mathfrak B $ is the covering whose elements are all the non-empty intersections of the elements of $ \mathfrak A $ and $ \mathfrak B $. The topological entropy $ h _ { \mathop{\rm top} } ( S) $ is defined to be the supremum of $ h ( S, \mathfrak A ) $ over all possible $ \mathfrak A $. There is an equivalent definition in the metric case: For a metric $ \rho $, let $ K _ \epsilon ( X, \rho ) $ denote the largest number of points of $ X $ with pairwise distance greater than $ \epsilon $. Then
$$ h _ { \mathop{\rm top} } ( S) = \ \lim\limits _ {\epsilon \rightarrow 0 } \ \lim\limits _ {n \rightarrow \infty } \ { \frac{1}{n} } \mathop{\rm log} \ K _ \epsilon ( X, \rho _ {n} ), $$
where $ \rho _ {n} ( x, y) = \max _ {0 \leq i \leq n } \rho ( S ^ {i} x, S ^ {i} y) $( cf. [2]–[4]).
It turns out that
$$ h _ { \mathop{\rm top} } ( S ^ {n} ) = \ n h _ { \mathop{\rm top} } ( S), $$
and if $ S $ is a homeomorphism, then $ h _ { \mathop{\rm top} } ( S ^ {-} 1 ) = h _ { \mathop{\rm top} } ( S) $. Hence it is natural to take the topological entropy of a cascade $ \{ S ^ {n} \} $ to be $ h _ { \mathop{\rm top} } ( S) $. For a topological flow (continuous-time dynamical system) $ \{ S _ {t} \} $ it turns out that
$$ h _ { \mathop{\rm top} } ( S _ {t} ) = \ | t | h _ { \mathop{\rm top} } ( S _ {1} ), $$
so it is natural to take the topological entropy of the flow to be $ h _ { \mathop{\rm top} } ( S _ {1} ) $. In a somewhat different way one can define the topological entropy for other transformation groups (it no longer reduces to the topological entropy of one of the elements of the group; cf. ).
The topological entropy $ h _ { \mathop{\rm top} } ( S) $ coincides with the supremum of the metric entropy $ h _ \mu ( S) $ over all possible normalized invariant Borel measures $ \mu $( cf. [2], [5]–;
for the existence of $ \max h _ \mu $ and the dependence of $ h _ { \mathop{\rm top} } ( S) $ on $ S $). This is a special case of the variational principle, which establishes a topological interpretation of the value
$$ \sup _ \mu \left [ h _ \mu ( S) + \int\limits f d \mu \right ] $$
for a fixed continuous function $ f $( cf. [4], [8], [9]). The topological entropy gives a characteristic of the "complexity" or "diversity" of motions in a dynamical system (cf. [10], [3], [4]). It is also connected in certain cases with the asymptotics (as $ T \rightarrow \infty $) of the number of periodic trajectories (of period $ \leq T $; cf. Periodic trajectory and [3], [4], –[13]). The "entropy conjecture54C70entropy conjecture" asserts that the topological entropy of a diffeomorphism $ S $ of a closed manifold $ W $ is not less than the logarithm of the spectral radius of the linear transformation induced by $ S $ on the homology spaces $ H _ {*} ( W; \mathbf R ) $( cf. , [15]). It has been proved in the $ C ^ \infty $- case, .
References
[1] | R.L. Adler, A.G. Konheim, M.H. McAndrew, "Topological entropy" Trans. Amer. Math. Soc. , 114 (1965) pp. 309–319 |
[2] | E.I. Dinaburg, "On the relation between various entropy characteristics of dynamical systems" Math. USSR Izv. , 5 : 2 (1971) pp. 337–378 Izv. Akad. Nauk SSSR, Ser. Mat. , 35 : 2 (1971) pp. 324–366 |
[3] | V.M. Alekseev, "Symbolic dynamics" , Eleventh Mathematical Summer School , Kiev (1976) pp. 5–210 (In Russian) |
[4] | R. Boywen, "Methods of symbolic dynamics" , Moscow (1979) (In Russian; translated from English) (Collection of papers) |
[5] | T.N.T. Goodman, "Relating topological entropy and measure entropy" Bull. London Math. Soc. , 3 (1971) pp. 176–180 |
[6] | L.W. Goodwyn, "Comparing topological entropy with measure-theoretic entropy" Amer. J. Math. , 94 (1972) pp. 366–368 |
[7a] | A.T. Tagi-zade, "The entropy of motions of amenable groups" Dokl. Akad. Nauk AzerbSSR , 34 : 6 (1978) pp. 18–22 (In Russian) |
[7b] | A.T. Tagi-zade, "Entropy characteristics of amenable groups" Dokl. Akad. Nauk AzerbSSR , 34 : 8 (1978) pp. 11–14 (In Russian) |
[8] | A.M. Stepin, A.T. Tagi-zade, "Variational characterization of the topological pressure of amenable transformation groups" Soviet Math. Dokl. , 22 : 2 (1980) pp. 405–409 Dokl. Akad. Nauk SSSR , 254 : 3 (1980) pp. 545–548 |
[9] | J. Moulin Ollagnier, D. Pinchon, "The variational principle" Studia Math. , 72 (1982) pp. 151–159 |
[10] | A.A. Brudno, "Entropy and the complexity of the trajectories of a dynamical system" Trans. Moscow Math. Soc. , 44 (1982) pp. 127–152 Trudy Moskov. Mat. Obshch. , 44 (1982) pp. 124–149 |
[11a] | A.G. Kushnirenko, "Problems in the general theory of dynamical systems on a manifold" Transl. Amer. Math. Soc. , 116 (1981) pp. 1–42 Ninth Math. Summer School (1976) pp. 52–124 |
[11b] | A.B. Katok, "Dynamical systems with hyperbolic structure" Transl. Amer. Math. Soc. , 116 (1981) pp. 43–96 Ninth Math. Summer School (1976) pp. 125–211 |
[11c] | V.M. Alekseev, "Quasirandom oscillations and qualitative questions in celestial mechanics" Transl. Amer. Math. Soc. , 116 (1981) pp. 97–169 Ninth Math. Summer School (1976) pp. 212–341 |
[12] | A.B. Katok, Ya.G. Sinai, A.M. Stepin, "The theory of dynamical systems and general transformation groups with invariant measure" J. Soviet Math. , 7 : 6 (1977) pp. 974–1065 Itogi Nauk. i Tekhn. Mat. Anal. , 13 (1975) pp. 129–262 |
[13] | A.B. Katok, "Lyapunov exponents, entropy and periodic orbits for diffeomorphisms" Publ. Math. IHES , 51 (1980) pp. 137–173 |
[14a] | A.B. Katok, "The entropy conjecture" D.V. Anosov (ed.) , Smooth dynamical systems , Moscow (1977) pp. 181–203 (In Russian) |
[14b] | M. Shub, "Dynamical systems, filtrations and entropy" Bull. Amer. Math. Soc. , 80 (1974) pp. 27–41 |
[15] | D. Fried, M. Shub, "Entropy, linearity and chain-recurrence" Publ. Math. IHES , 50 (1979) pp. 203–214 |
[16] | C. Grilleneberger, "Ergodic theory on compact spaces" , Springer (1976) |
Comments
Instead of the collection of translations [4] one may consult [a2].
In the above, $ h _ \mu ( S) $ denotes the entropy of $ S $ with respect to the normalized invariant Borel measure $ \mu $( cf. Entropy theory of a dynamical system). The value $ P _ {S} ( f ) = \sup _ \mu [ h _ \mu ( S) + \int f d \mu ] $, where $ \mu $ runs over the set of all normalized invariant Borel measures, is called the pressure of $ f $( with respect to $ S $). If $ \mu $ satisfies $ h _ \mu ( S) + \int f d \mu = P _ {S} ( f ) $( i.e., the sup is a max), then $ \mu $ is called an equilibrium state or Gibbs measure for $ f $( with respect to $ S $). See [a2], also for existence and uniqueness results.
For recent results about the estimation of topological entropy, see [a1] and the references given there.
References
[a1] | S.E. Newhouse, "Entropy and volume" Ergod. Th. & Dynam. Syst. , 8 (1988) pp. 283–299 Zbl 0638.58016 |
[a2] | R. Bowen, "Equilibrium states and the ergodic theory of Anosov diffeomorphisms" , Lect. notes in math. , 470 , Springer (1975) Zbl 0308.28010; 2nd ed. (2008) ISBN 978-3-540-77605-5 Zbl 1172.37001 |
Topological entropy. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Topological_entropy&oldid=42692