Difference between revisions of "Tate module"
Ulf Rehmann (talk | contribs) m (MR/ZBL numbers added) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
| Line 1: | Line 1: | ||
| − | + | <!-- | |
| + | t0922701.png | ||
| + | $#A+1 = 60 n = 4 | ||
| + | $#C+1 = 60 : ~/encyclopedia/old_files/data/T092/T.0902270 Tate module | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| − | + | {{TEX|auto}} | |
| + | {{TEX|done}} | ||
| − | + | A free $ \mathbf Z _ {p} $- | |
| + | module $ T ( G) $ | ||
| + | associated to a [[P-divisible group| $ p $- | ||
| + | divisible group]] $ G $ | ||
| + | defined over a complete discrete valuation ring $ R $ | ||
| + | of characteristic 0 with residue field $ k $ | ||
| + | of characteristic $ p $. | ||
| + | Let $ G = \{ G _ \nu , i _ \nu \} $, | ||
| + | $ \nu \geq 0 $, | ||
| + | and $ T ( G) = \lim\limits _ \leftarrow G _ \nu ( \overline{K}\; ) $, | ||
| + | where $ \overline{K}\; $ | ||
| + | is the algebraic closure of the quotient field $ K $ | ||
| + | of the ring $ R $; | ||
| + | the limit is taken with respect to the mappings $ j _ \nu : G _ {\nu + 1 } \rightarrow G _ \nu $ | ||
| + | for which $ i _ \nu \circ j _ \nu = p $. | ||
| + | Then $ T ( G) = \mathbf Z _ {p} ^ {h} $, | ||
| + | where $ h $ | ||
| + | is the height of the group $ G $ | ||
| + | and $ T ( G) $ | ||
| + | has the natural structure of a $ G ( \overline{K}\; /K) $- | ||
| + | module. The functor $ G \rightarrow T ( G) $ | ||
| + | allows one to reduce a number of questions about the group $ G $ | ||
| + | to simpler questions about $ G ( \overline{K}\; /K) $- | ||
| + | modules. | ||
| − | + | The Tate module is defined similarly for an [[Abelian variety|Abelian variety]]. Let $ A $ | |
| + | be an Abelian variety defined over $ k $, | ||
| + | and let $ A _ {p ^ {n} } $ | ||
| + | be the group of points of order $ p ^ {n} $ | ||
| + | in $ A ( \overline{k}\; ) $. | ||
| + | Then $ T ( A) $ | ||
| + | is defined as $ \lim\limits _ \leftarrow A _ {p ^ {n} } $. | ||
| + | The Tate module of a curve $ X $ | ||
| + | is the Tate module of its [[Jacobi variety|Jacobi variety]]. | ||
| − | + | The construction of the module $ T _ {p} ( X) $ | |
| + | can be extended to number fields. Let $ K $ | ||
| + | be an algebraic number field and let $ k _ \infty $ | ||
| + | be a $ \mathbf Z _ {p} $- | ||
| + | extension of the field $ k $( | ||
| + | an extension with Galois group isomorphic to $ \mathbf Z _ {p} $). | ||
| + | For the intermediate field $ k _ {n} $ | ||
| + | of degree $ p ^ {n} $ | ||
| + | over $ k $, | ||
| + | let $ \mathop{\rm Cl} ( k _ {n} ) _ {p} $ | ||
| + | be the $ p $- | ||
| + | component of the ideal class group of the field $ k _ {n} $. | ||
| + | Then $ T _ {p} ( k _ \infty ) = \lim\limits _ \leftarrow \mathop{\rm Cl} ( k _ {n} ) _ {p} $, | ||
| + | where the limit is taken with respect to norm-mappings $ \mathop{\rm Cl} ( k _ {m} ) _ {p} \rightarrow \mathop{\rm Cl} ( k _ {n} ) _ {p} $ | ||
| + | for $ m > n $. | ||
| + | The module $ T _ {p} ( k _ \infty ) $ | ||
| + | is characterized by its Iwasawa invariants $ \lambda $, | ||
| + | $ \mu $ | ||
| + | and $ \nu $, | ||
| + | defined by | ||
| + | |||
| + | $$ | ||
| + | | \mathop{\rm Cl} ( k _ {n} ) _ {p} | = \ | ||
| + | p ^ {e _ {n} } , | ||
| + | $$ | ||
| + | |||
| + | where $ e _ {n} = \lambda n + \mu p ^ {n + \nu } $ | ||
| + | for all sufficiently large $ n $. | ||
| + | For cyclotomic $ \mathbf Z _ {p} $- | ||
| + | extensions the invariant $ \mu $ | ||
| + | is equal to 0. This was also proved for Abelian fields [[#References|[4]]]. Examples are known of non-cyclotomic $ \mathbf Z _ {p} $- | ||
| + | extensions with $ \mu > 0 $( | ||
| + | see [[#References|[3]]]). Even in the case when $ \mu = 0 $, | ||
| + | $ T _ {p} ( k _ \infty ) $ | ||
| + | is not necessarily a free $ \mathbf Z _ {p} $- | ||
| + | module. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> J.T. Tate, "<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092270/t09227061.png" />-divisible groups" T.A. Springer (ed.) et al. (ed.) , ''Proc. Conf. local fields (Driebergen, 1966)'' , Springer (1967) pp. 158–183 {{MR|0231827}} {{ZBL|0157.27601}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> I.R. Shafarevich, "The zeta-function" , Moscow (1969) (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> K. Iwasawa, "On the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092270/t09227062.png" />-invariants of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092270/t09227063.png" />-extensions" , ''Number theory, algebraic geometry and commutative algebra'' , Kinokuniya (1973) pp. 1–11 {{MR|357371}} {{ZBL|}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> B. Ferrero, L.C. Washington, "The Iwasawa invariant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092270/t09227064.png" /> vanishes for abelian number fields" ''Ann. of Math.'' , '''109''' (1979) pp. 377–395 {{MR|528968}} {{ZBL|0443.12001}} </TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> J.T. Tate, "<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092270/t09227061.png" />-divisible groups" T.A. Springer (ed.) et al. (ed.) , ''Proc. Conf. local fields (Driebergen, 1966)'' , Springer (1967) pp. 158–183 {{MR|0231827}} {{ZBL|0157.27601}} </TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> I.R. Shafarevich, "The zeta-function" , Moscow (1969) (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> K. Iwasawa, "On the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092270/t09227062.png" />-invariants of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092270/t09227063.png" />-extensions" , ''Number theory, algebraic geometry and commutative algebra'' , Kinokuniya (1973) pp. 1–11 {{MR|357371}} {{ZBL|}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> B. Ferrero, L.C. Washington, "The Iwasawa invariant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/t/t092/t092270/t09227064.png" /> vanishes for abelian number fields" ''Ann. of Math.'' , '''109''' (1979) pp. 377–395 {{MR|528968}} {{ZBL|0443.12001}} </TD></TR></table> | ||
Latest revision as of 08:25, 6 June 2020
A free $ \mathbf Z _ {p} $-
module $ T ( G) $
associated to a $ p $-
divisible group $ G $
defined over a complete discrete valuation ring $ R $
of characteristic 0 with residue field $ k $
of characteristic $ p $.
Let $ G = \{ G _ \nu , i _ \nu \} $,
$ \nu \geq 0 $,
and $ T ( G) = \lim\limits _ \leftarrow G _ \nu ( \overline{K}\; ) $,
where $ \overline{K}\; $
is the algebraic closure of the quotient field $ K $
of the ring $ R $;
the limit is taken with respect to the mappings $ j _ \nu : G _ {\nu + 1 } \rightarrow G _ \nu $
for which $ i _ \nu \circ j _ \nu = p $.
Then $ T ( G) = \mathbf Z _ {p} ^ {h} $,
where $ h $
is the height of the group $ G $
and $ T ( G) $
has the natural structure of a $ G ( \overline{K}\; /K) $-
module. The functor $ G \rightarrow T ( G) $
allows one to reduce a number of questions about the group $ G $
to simpler questions about $ G ( \overline{K}\; /K) $-
modules.
The Tate module is defined similarly for an Abelian variety. Let $ A $ be an Abelian variety defined over $ k $, and let $ A _ {p ^ {n} } $ be the group of points of order $ p ^ {n} $ in $ A ( \overline{k}\; ) $. Then $ T ( A) $ is defined as $ \lim\limits _ \leftarrow A _ {p ^ {n} } $. The Tate module of a curve $ X $ is the Tate module of its Jacobi variety.
The construction of the module $ T _ {p} ( X) $ can be extended to number fields. Let $ K $ be an algebraic number field and let $ k _ \infty $ be a $ \mathbf Z _ {p} $- extension of the field $ k $( an extension with Galois group isomorphic to $ \mathbf Z _ {p} $). For the intermediate field $ k _ {n} $ of degree $ p ^ {n} $ over $ k $, let $ \mathop{\rm Cl} ( k _ {n} ) _ {p} $ be the $ p $- component of the ideal class group of the field $ k _ {n} $. Then $ T _ {p} ( k _ \infty ) = \lim\limits _ \leftarrow \mathop{\rm Cl} ( k _ {n} ) _ {p} $, where the limit is taken with respect to norm-mappings $ \mathop{\rm Cl} ( k _ {m} ) _ {p} \rightarrow \mathop{\rm Cl} ( k _ {n} ) _ {p} $ for $ m > n $. The module $ T _ {p} ( k _ \infty ) $ is characterized by its Iwasawa invariants $ \lambda $, $ \mu $ and $ \nu $, defined by
$$ | \mathop{\rm Cl} ( k _ {n} ) _ {p} | = \ p ^ {e _ {n} } , $$
where $ e _ {n} = \lambda n + \mu p ^ {n + \nu } $ for all sufficiently large $ n $. For cyclotomic $ \mathbf Z _ {p} $- extensions the invariant $ \mu $ is equal to 0. This was also proved for Abelian fields [4]. Examples are known of non-cyclotomic $ \mathbf Z _ {p} $- extensions with $ \mu > 0 $( see [3]). Even in the case when $ \mu = 0 $, $ T _ {p} ( k _ \infty ) $ is not necessarily a free $ \mathbf Z _ {p} $- module.
References
| [1] | J.T. Tate, " -divisible groups" T.A. Springer (ed.) et al. (ed.) , Proc. Conf. local fields (Driebergen, 1966) , Springer (1967) pp. 158–183 MR0231827 Zbl 0157.27601 |
| [2] | I.R. Shafarevich, "The zeta-function" , Moscow (1969) (In Russian) |
| [3] | K. Iwasawa, "On the -invariants of -extensions" , Number theory, algebraic geometry and commutative algebra , Kinokuniya (1973) pp. 1–11 MR357371 |
| [4] | B. Ferrero, L.C. Washington, "The Iwasawa invariant vanishes for abelian number fields" Ann. of Math. , 109 (1979) pp. 377–395 MR528968 Zbl 0443.12001 |
Tate module. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Tate_module&oldid=23993
-divisible groups" T.A. Springer (ed.) et al. (ed.) , Proc. Conf. local fields (Driebergen, 1966) , Springer (1967) pp. 158–183
-invariants of
-extensions" , Number theory, algebraic geometry and commutative algebra , Kinokuniya (1973) pp. 1–11
vanishes for abelian number fields" Ann. of Math. , 109 (1979) pp. 377–395