Difference between revisions of "Suzuki group"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | A | + | <!-- |
+ | s0915101.png | ||
+ | $#A+1 = 45 n = 0 | ||
+ | $#C+1 = 45 : ~/encyclopedia/old_files/data/S091/S.0901510 Suzuki group | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | A [[Simple finite group|simple finite group]] $ \mathop{\rm Sz} ( q) $, | |
+ | a member of the infinite series of simple groups, discovered by M. Suzuki. | ||
− | + | Let $ n $ | |
+ | be a natural number, let $ F $ | ||
+ | be the finite field with $ q = 2 ^ {2n+} 1 $ | ||
+ | elements, and let $ \theta $ | ||
+ | be an automorphism of $ F $ | ||
+ | such that $ \alpha ^ {\theta ^ {2} } = \alpha ^ {2} $ | ||
+ | for any $ \alpha \in F $. | ||
+ | The Suzuki group $ \mathop{\rm Sz} ( q) $ | ||
+ | is then generated by the subgroup $ T $ | ||
+ | consisting of all diagonal matrices of order 4 with diagonal elements $ \lambda ^ {1+ \theta } , \lambda , \lambda ^ {-} 1 , ( \lambda ^ {1+ \theta } ) ^ {-} 1 $( | ||
+ | $ \lambda \in F $, | ||
+ | $ \lambda \neq 0 $), | ||
+ | the subgroup $ U $ | ||
+ | consisting of all triangular matrices of the form | ||
− | + | $$ | |
+ | \left \| | ||
− | The subgroup | + | $ ( \alpha , \beta \in F ) $, |
+ | and the matrix | ||
+ | |||
+ | $$ | ||
+ | \left \| | ||
+ | |||
+ | The subgroup $ U $ | ||
+ | is a Sylow $ 2 $- | ||
+ | subgroup of the group $ \mathop{\rm Sz} ( q) $; | ||
+ | it is a [[Suzuki-2-group|Suzuki $ 2 $- | ||
+ | group]]. The subgroup $ UT $ | ||
+ | coincides with the normalizer of the subgroup $ U $. | ||
+ | The permutation representation of the group $ \mathop{\rm Sz} ( q) $ | ||
+ | on the cosets of $ UT $ | ||
+ | is doubly transitive; its degree is equal to $ q ^ {2} + 1 $. | ||
+ | The order of the Suzuki group $ \mathop{\rm Sz} ( q) $ | ||
+ | is equal to $ q ^ {2} ( q- 1)( q ^ {2} + 1) $, | ||
+ | and is not divisible by 3. On the other hand, any non-Abelian finite simple group whose order is not divisible by 3 is isomorphic to a Suzuki group. The group $ \mathop{\rm Sz} ( q) $ | ||
+ | is a maximal subgroup of the symplectic group $ \mathop{\rm Sp} ( 4, q) $ | ||
+ | and is the centralizer in $ \mathop{\rm Sp} ( 4, q) $ | ||
+ | of an automorphism of order 2 of the group $ \mathop{\rm Sp} ( 4, q) = B _ {2} ( q) $. | ||
+ | In other words, $ \mathop{\rm Sz} ( q) $ | ||
+ | is isomorphic to $ {} ^ {2} B _ {2} ( q) $— | ||
+ | the twisted analogue of a [[Chevalley group|Chevalley group]] of type $ B _ {2} $ | ||
+ | over the field with $ q $ | ||
+ | elements. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> M. Suzuki, "On a class of doubly transitive groups" ''Ann. of Math.'' , '''75''' : 1 (1962) pp. 105–145</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> R.W. Carter, "Simple groups of Lie type" , Wiley (Interscience) (1972)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> M. Suzuki, "On a class of doubly transitive groups" ''Ann. of Math.'' , '''75''' : 1 (1962) pp. 105–145</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> R.W. Carter, "Simple groups of Lie type" , Wiley (Interscience) (1972)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | There is in fact precisely one automorphism | + | There is in fact precisely one automorphism $ \theta $ |
+ | of $ F $ | ||
+ | such that $ \theta ^ {2} ( \alpha ) = \alpha ^ {2} $ | ||
+ | for all $ \alpha \in F $. | ||
+ | It is $ \theta ( \alpha ) = \alpha ^ {2 ^ {m+ 1 } } $. | ||
− | There is a twisted polarity whose absolute points are the | + | There is a twisted polarity whose absolute points are the $ q ^ {2} + 1 $ |
+ | $ 1 $- | ||
+ | dimensional subspaces of $ F _ {q} ^ {q} $ | ||
+ | that are fixed by a conjugate of $ UT $. | ||
+ | The set of absolute points thus obtained is an [[Ovoid(2)|ovoid]]. See [[#References|[a1]]]–[[#References|[a2]]]. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J. Tits, "Ovoïdes et groupes de Suzuki" ''Arch. Math.'' , '''13''' (1962) pp. 187–198</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J. Tits, "Une propriété charactéristique des ovoïdes associés aux groupes de Suzuki" ''Arch. Math.'' , '''17''' (1966) pp. 136–153</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> B. Huppert, "Finite groups" , '''3''' , Springer (1982) pp. Chapt. IX.3</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J. Tits, "Ovoïdes et groupes de Suzuki" ''Arch. Math.'' , '''13''' (1962) pp. 187–198</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J. Tits, "Une propriété charactéristique des ovoïdes associés aux groupes de Suzuki" ''Arch. Math.'' , '''17''' (1966) pp. 136–153</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> B. Huppert, "Finite groups" , '''3''' , Springer (1982) pp. Chapt. IX.3</TD></TR></table> |
Revision as of 08:24, 6 June 2020
A simple finite group $ \mathop{\rm Sz} ( q) $,
a member of the infinite series of simple groups, discovered by M. Suzuki.
Let $ n $ be a natural number, let $ F $ be the finite field with $ q = 2 ^ {2n+} 1 $ elements, and let $ \theta $ be an automorphism of $ F $ such that $ \alpha ^ {\theta ^ {2} } = \alpha ^ {2} $ for any $ \alpha \in F $. The Suzuki group $ \mathop{\rm Sz} ( q) $ is then generated by the subgroup $ T $ consisting of all diagonal matrices of order 4 with diagonal elements $ \lambda ^ {1+ \theta } , \lambda , \lambda ^ {-} 1 , ( \lambda ^ {1+ \theta } ) ^ {-} 1 $( $ \lambda \in F $, $ \lambda \neq 0 $), the subgroup $ U $ consisting of all triangular matrices of the form
$$ \left \| $ ( \alpha , \beta \in F ) $, and the matrix $$ \left \|
The subgroup $ U $ is a Sylow $ 2 $- subgroup of the group $ \mathop{\rm Sz} ( q) $; it is a Suzuki $ 2 $- group. The subgroup $ UT $ coincides with the normalizer of the subgroup $ U $. The permutation representation of the group $ \mathop{\rm Sz} ( q) $ on the cosets of $ UT $ is doubly transitive; its degree is equal to $ q ^ {2} + 1 $. The order of the Suzuki group $ \mathop{\rm Sz} ( q) $ is equal to $ q ^ {2} ( q- 1)( q ^ {2} + 1) $, and is not divisible by 3. On the other hand, any non-Abelian finite simple group whose order is not divisible by 3 is isomorphic to a Suzuki group. The group $ \mathop{\rm Sz} ( q) $ is a maximal subgroup of the symplectic group $ \mathop{\rm Sp} ( 4, q) $ and is the centralizer in $ \mathop{\rm Sp} ( 4, q) $ of an automorphism of order 2 of the group $ \mathop{\rm Sp} ( 4, q) = B _ {2} ( q) $. In other words, $ \mathop{\rm Sz} ( q) $ is isomorphic to $ {} ^ {2} B _ {2} ( q) $— the twisted analogue of a Chevalley group of type $ B _ {2} $ over the field with $ q $ elements.
References
[1] | M. Suzuki, "On a class of doubly transitive groups" Ann. of Math. , 75 : 1 (1962) pp. 105–145 |
[2] | R.W. Carter, "Simple groups of Lie type" , Wiley (Interscience) (1972) |
Comments
There is in fact precisely one automorphism $ \theta $ of $ F $ such that $ \theta ^ {2} ( \alpha ) = \alpha ^ {2} $ for all $ \alpha \in F $. It is $ \theta ( \alpha ) = \alpha ^ {2 ^ {m+ 1 } } $.
There is a twisted polarity whose absolute points are the $ q ^ {2} + 1 $ $ 1 $- dimensional subspaces of $ F _ {q} ^ {q} $ that are fixed by a conjugate of $ UT $. The set of absolute points thus obtained is an ovoid. See [a1]–[a2].
References
[a1] | J. Tits, "Ovoïdes et groupes de Suzuki" Arch. Math. , 13 (1962) pp. 187–198 |
[a2] | J. Tits, "Une propriété charactéristique des ovoïdes associés aux groupes de Suzuki" Arch. Math. , 17 (1966) pp. 136–153 |
[a3] | B. Huppert, "Finite groups" , 3 , Springer (1982) pp. Chapt. IX.3 |
Suzuki group. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Suzuki_group&oldid=19048