Namespaces
Variants
Actions

Difference between revisions of "Submersion"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090940/s0909401.png" /> from an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090940/s0909402.png" />-dimensional manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090940/s0909403.png" /> into an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090940/s0909404.png" />-dimensional manifold <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090940/s0909405.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090940/s0909406.png" />, under which for any point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090940/s0909407.png" /> it is possible to introduce local coordinates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090940/s0909408.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090940/s0909409.png" /> near <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090940/s09094010.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090940/s09094011.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090940/s09094012.png" /> near <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090940/s09094013.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090940/s09094014.png" /> is locally represented in terms of these coordinates by
+
<!--
 +
s0909401.png
 +
$#A+1 = 23 n = 0
 +
$#C+1 = 23 : ~/encyclopedia/old_files/data/S090/S.0900940 Submersion
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090940/s09094015.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090940/s09094016.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090940/s09094017.png" /> possess the structure of a piecewise-linear, -analytic or -differentiable (of class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090940/s09094018.png" />) manifold and the local coordinates can be chosen piecewise-linear, -analytic or -differentiable (of class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090940/s09094019.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090940/s09094020.png" />), then the submersion is said to be piecewise-linear, -analytic or -differentiable (of class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090940/s09094021.png" />). A submersion can also be defined for a manifold with boundary (in topological problems it is advisable to impose an extra condition on the behaviour of the mapping close to the boundary, see [[#References|[1]]]) and in the infinite-dimensional case (see [[#References|[2]]]). The concept of a submersion in an informal sense is the dual of the concept of an [[Immersion|immersion]] (cf. also [[Immersion of a manifold|Immersion of a manifold]]), and their theories are analogous.
+
A mapping  $  f: M \rightarrow N $
 +
from an  $  m $-
 +
dimensional manifold  $  M $
 +
into an  $  n $-
 +
dimensional manifold  $  N $,
 +
$  n \leq  m $,
 +
under which for any point  $  p \in M $
 +
it is possible to introduce local coordinates  $  x _ {1} \dots x _ {m} $
 +
on  $  M $
 +
near  $  p $
 +
and  $  y _ {1} \dots y _ {n} $
 +
on  $  N $
 +
near  $  f( p) $
 +
such that  $  f $
 +
is locally represented in terms of these coordinates by
 +
 
 +
$$
 +
( x _ {1} \dots x _ {m} )  \rightarrow  ( x _ {1} \dots x _ {n} ).
 +
$$
 +
 
 +
If  $  M $
 +
and $  N $
 +
possess the structure of a piecewise-linear, -analytic or -differentiable (of class $  C  ^ {k} $)  
 +
manifold and the local coordinates can be chosen piecewise-linear, -analytic or -differentiable (of class $  C  ^ {l} $,  
 +
$  l \leq  k $),  
 +
then the submersion is said to be piecewise-linear, -analytic or -differentiable (of class $  C  ^ {l} $).  
 +
A submersion can also be defined for a manifold with boundary (in topological problems it is advisable to impose an extra condition on the behaviour of the mapping close to the boundary, see [[#References|[1]]]) and in the infinite-dimensional case (see [[#References|[2]]]). The concept of a submersion in an informal sense is the dual of the concept of an [[Immersion|immersion]] (cf. also [[Immersion of a manifold|Immersion of a manifold]]), and their theories are analogous.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  V.A. Rokhlin,  D.B. Fuks,  "Beginner's course in topology. Geometrical chapters" , Springer  (1984)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  S. Lang,  "Introduction to differentiable manifolds" , Interscience  (1967)  pp. App. III</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  V.A. Rokhlin,  D.B. Fuks,  "Beginner's course in topology. Geometrical chapters" , Springer  (1984)  (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  S. Lang,  "Introduction to differentiable manifolds" , Interscience  (1967)  pp. App. III</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
Submersions are classified by the induced mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090940/s09094022.png" /> of tangent bundles, when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s090/s090940/s09094023.png" /> is an open manifold. See [[#References|[a1]]].
+
Submersions are classified by the induced mapping $  TM \rightarrow TN $
 +
of tangent bundles, when $  M $
 +
is an open manifold. See [[#References|[a1]]].
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  A. Phillips,  "Submersions of open manifolds"  ''Topology'' , '''6'''  (1966)  pp. 171–206</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  A. Phillips,  "Submersions of open manifolds"  ''Topology'' , '''6'''  (1966)  pp. 171–206</TD></TR></table>

Latest revision as of 08:24, 6 June 2020


A mapping $ f: M \rightarrow N $ from an $ m $- dimensional manifold $ M $ into an $ n $- dimensional manifold $ N $, $ n \leq m $, under which for any point $ p \in M $ it is possible to introduce local coordinates $ x _ {1} \dots x _ {m} $ on $ M $ near $ p $ and $ y _ {1} \dots y _ {n} $ on $ N $ near $ f( p) $ such that $ f $ is locally represented in terms of these coordinates by

$$ ( x _ {1} \dots x _ {m} ) \rightarrow ( x _ {1} \dots x _ {n} ). $$

If $ M $ and $ N $ possess the structure of a piecewise-linear, -analytic or -differentiable (of class $ C ^ {k} $) manifold and the local coordinates can be chosen piecewise-linear, -analytic or -differentiable (of class $ C ^ {l} $, $ l \leq k $), then the submersion is said to be piecewise-linear, -analytic or -differentiable (of class $ C ^ {l} $). A submersion can also be defined for a manifold with boundary (in topological problems it is advisable to impose an extra condition on the behaviour of the mapping close to the boundary, see [1]) and in the infinite-dimensional case (see [2]). The concept of a submersion in an informal sense is the dual of the concept of an immersion (cf. also Immersion of a manifold), and their theories are analogous.

References

[1] V.A. Rokhlin, D.B. Fuks, "Beginner's course in topology. Geometrical chapters" , Springer (1984) (Translated from Russian)
[2] S. Lang, "Introduction to differentiable manifolds" , Interscience (1967) pp. App. III

Comments

Submersions are classified by the induced mapping $ TM \rightarrow TN $ of tangent bundles, when $ M $ is an open manifold. See [a1].

References

[a1] A. Phillips, "Submersions of open manifolds" Topology , 6 (1966) pp. 171–206
How to Cite This Entry:
Submersion. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Submersion&oldid=14947
This article was adapted from an original article by D.V. Anosov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article