Namespaces
Variants
Actions

Difference between revisions of "Simplex (abstract)"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
A [[Topological space|topological space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085330/s0853301.png" /> whose points are non-negative functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085330/s0853302.png" /> on a finite set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085330/s0853303.png" /> satisfying <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085330/s0853304.png" />. The topology on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085330/s0853305.png" /> is induced from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085330/s0853306.png" />, the space of all functions from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085330/s0853307.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085330/s0853308.png" />. The real numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085330/s0853309.png" /> are called the barycentric coordinates of the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085330/s08533010.png" />, and the dimension of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085330/s08533011.png" /> is defined as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085330/s08533012.png" />. In case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085330/s08533013.png" /> is a linearly independent subset of a Euclidean space, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085330/s08533014.png" /> is homeomorphic to the convex hull of the set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085330/s08533015.png" /> (the homeomorphism being given by the correspondence <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085330/s08533016.png" />). The convex hull of a linearly independent subset of a Euclidean space is called a Euclidean simplex.
+
<!--
 +
s0853301.png
 +
$#A+1 = 50 n = 0
 +
$#C+1 = 50 : ~/encyclopedia/old_files/data/S085/S.0805330 Simplex (abstract)
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
For any mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085330/s08533017.png" /> of finite sets, the formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085330/s08533018.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085330/s08533019.png" />, defines a continuous mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085330/s08533020.png" />, which, for Euclidean simplices, is an affine (non-homogeneous linear) mapping extending <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085330/s08533021.png" />. This defines a functor from the category of finite sets into the category of topological spaces. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085330/s08533022.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085330/s08533023.png" /> is the corresponding inclusion mapping, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085330/s08533024.png" /> is a homeomorphism onto a closed subset of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085330/s08533025.png" />, called a face, which is usually identified with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085330/s08533026.png" />. Zero-dimensional faces are called vertices (as a rule, they are identified with the elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085330/s08533027.png" />).
+
{{TEX|auto}}
 +
{{TEX|done}}
  
A topological ordered simplex is a topological space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085330/s08533028.png" /> together with a given homeomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085330/s08533029.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085330/s08533030.png" /> is a [[Standard simplex|standard simplex]]. The images of the faces of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085330/s08533031.png" /> under <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085330/s08533032.png" /> are called the faces of the topological ordered simplex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085330/s08533033.png" />. A mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085330/s08533034.png" /> of two topological ordered simplices <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085330/s08533035.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085330/s08533036.png" /> is said to be linear if it has the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085330/s08533037.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085330/s08533038.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085330/s08533039.png" /> are the given homeomorphisms and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085330/s08533040.png" /> is a mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085330/s08533041.png" /> of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085330/s08533042.png" />.
+
A [[Topological space|topological space]]  $  | A | $
 +
whose points are non-negative functions  $  \phi : A \rightarrow \mathbf R $
 +
on a finite set  $  A $
 +
satisfying  $  \sum _ {a \in A }  \phi ( a) = 1 $.  
 +
The topology on  $  | A | $
 +
is induced from  $  \mathbf R  ^ {A} $,  
 +
the space of all functions from  $  A $
 +
into  $  \mathbf R $.  
 +
The real numbers  $  \phi ( a) $
 +
are called the barycentric coordinates of the point  $  \phi $,
 +
and the dimension of  $  | A | $
 +
is defined as  $  \mathop{\rm card} ( A) - 1 $.  
 +
In case  $  A $
 +
is a linearly independent subset of a Euclidean space,  $  | A | $
 +
is homeomorphic to the convex hull of the set  $  A $(
 +
the homeomorphism being given by the correspondence  $  \phi \mapsto \sum _ {a \in A }  \phi ( a) \cdot a $).  
 +
The convex hull of a linearly independent subset of a Euclidean space is called a Euclidean simplex.
  
A topological simplex (of dimension <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085330/s08533043.png" />) is a topological space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085330/s08533044.png" /> equipped with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085330/s08533045.png" /> homeomorphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085330/s08533046.png" /> (that is, with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085330/s08533047.png" /> structures of a topological ordered simplex) that differ by homeomorphisms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085330/s08533048.png" /> of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085330/s08533049.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s085/s085330/s08533050.png" /> is an arbitrary permutation of the vertices. Similarly, a mapping of topological simplices is called linear if it is a linear mapping of the corresponding topological ordered simplices.
+
For any mapping  $  f:  A \rightarrow B $
 +
of finite sets, the formula  $  (| f | \phi ) ( b) = \sum _ {f ( a) = b }  \phi ( a) $,
 +
$  b \in B $,
 +
defines a continuous mapping  $  | f |: | A | \rightarrow | B | $,
 +
which, for Euclidean simplices, is an affine (non-homogeneous linear) mapping extending  $  f $.  
 +
This defines a functor from the category of finite sets into the category of topological spaces. If  $  B \subset  A $
 +
and  $  i: B \rightarrow A $
 +
is the corresponding inclusion mapping, then  $  | i | $
 +
is a homeomorphism onto a closed subset of $  | A | $,
 +
called a face, which is usually identified with  $  | B | $.
 +
Zero-dimensional faces are called vertices (as a rule, they are identified with the elements of $  A $).
  
Elements of simplicial sets (cf. [[Simplicial set|Simplicial set]]) and distinguished subsets of simplicial schemes (cf. [[Simplicial scheme|Simplicial scheme]]) are also referred to as simplices.
+
A topological ordered simplex is a topological space  $  X $
 +
together with a given homeomorphism  $  h:  \Delta  ^ {n} \rightarrow X $,
 +
where  $  \Delta  ^ {n} $
 +
is a [[Standard simplex|standard simplex]]. The images of the faces of  $  \Delta  ^ {n} $
 +
under  $  h $
 +
are called the faces of the topological ordered simplex  $  X $.
 +
A mapping  $  X \rightarrow Y $
 +
of two topological ordered simplices  $  X $
 +
and $  Y $
 +
is said to be linear if it has the form  $  k \circ F \circ h  ^ {-} 1 $,
 +
where  $  k $
 +
and  $  h $
 +
are the given homeomorphisms and  $  F $
 +
is a mapping  $  \Delta  ^ {n} \rightarrow \Delta  ^ {n} $
 +
of the form  $  | f | $.
  
 +
A topological simplex (of dimension  $  n $)
 +
is a topological space  $  X $
 +
equipped with  $  ( n + 1)! $
 +
homeomorphisms  $  \Delta  ^ {n} \rightarrow X $(
 +
that is, with  $  ( n + 1)! $
 +
structures of a topological ordered simplex) that differ by homeomorphisms  $  \Delta  ^ {n} \rightarrow \Delta  ^ {n} $
 +
of the form  $  | f | $,
 +
where  $  f $
 +
is an arbitrary permutation of the vertices. Similarly, a mapping of topological simplices is called linear if it is a linear mapping of the corresponding topological ordered simplices.
  
 +
Elements of simplicial sets (cf. [[Simplicial set|Simplicial set]]) and distinguished subsets of simplicial schemes (cf. [[Simplicial scheme|Simplicial scheme]]) are also referred to as simplices.
  
 
====Comments====
 
====Comments====
 
A simplex is also a constituent of a [[Simplicial complex|simplicial complex]], and a simplicial complex such that all subsets of its underlying subset are simplices is also called a simplex.
 
A simplex is also a constituent of a [[Simplicial complex|simplicial complex]], and a simplicial complex such that all subsets of its underlying subset are simplices is also called a simplex.

Latest revision as of 08:14, 6 June 2020


A topological space $ | A | $ whose points are non-negative functions $ \phi : A \rightarrow \mathbf R $ on a finite set $ A $ satisfying $ \sum _ {a \in A } \phi ( a) = 1 $. The topology on $ | A | $ is induced from $ \mathbf R ^ {A} $, the space of all functions from $ A $ into $ \mathbf R $. The real numbers $ \phi ( a) $ are called the barycentric coordinates of the point $ \phi $, and the dimension of $ | A | $ is defined as $ \mathop{\rm card} ( A) - 1 $. In case $ A $ is a linearly independent subset of a Euclidean space, $ | A | $ is homeomorphic to the convex hull of the set $ A $( the homeomorphism being given by the correspondence $ \phi \mapsto \sum _ {a \in A } \phi ( a) \cdot a $). The convex hull of a linearly independent subset of a Euclidean space is called a Euclidean simplex.

For any mapping $ f: A \rightarrow B $ of finite sets, the formula $ (| f | \phi ) ( b) = \sum _ {f ( a) = b } \phi ( a) $, $ b \in B $, defines a continuous mapping $ | f |: | A | \rightarrow | B | $, which, for Euclidean simplices, is an affine (non-homogeneous linear) mapping extending $ f $. This defines a functor from the category of finite sets into the category of topological spaces. If $ B \subset A $ and $ i: B \rightarrow A $ is the corresponding inclusion mapping, then $ | i | $ is a homeomorphism onto a closed subset of $ | A | $, called a face, which is usually identified with $ | B | $. Zero-dimensional faces are called vertices (as a rule, they are identified with the elements of $ A $).

A topological ordered simplex is a topological space $ X $ together with a given homeomorphism $ h: \Delta ^ {n} \rightarrow X $, where $ \Delta ^ {n} $ is a standard simplex. The images of the faces of $ \Delta ^ {n} $ under $ h $ are called the faces of the topological ordered simplex $ X $. A mapping $ X \rightarrow Y $ of two topological ordered simplices $ X $ and $ Y $ is said to be linear if it has the form $ k \circ F \circ h ^ {-} 1 $, where $ k $ and $ h $ are the given homeomorphisms and $ F $ is a mapping $ \Delta ^ {n} \rightarrow \Delta ^ {n} $ of the form $ | f | $.

A topological simplex (of dimension $ n $) is a topological space $ X $ equipped with $ ( n + 1)! $ homeomorphisms $ \Delta ^ {n} \rightarrow X $( that is, with $ ( n + 1)! $ structures of a topological ordered simplex) that differ by homeomorphisms $ \Delta ^ {n} \rightarrow \Delta ^ {n} $ of the form $ | f | $, where $ f $ is an arbitrary permutation of the vertices. Similarly, a mapping of topological simplices is called linear if it is a linear mapping of the corresponding topological ordered simplices.

Elements of simplicial sets (cf. Simplicial set) and distinguished subsets of simplicial schemes (cf. Simplicial scheme) are also referred to as simplices.

Comments

A simplex is also a constituent of a simplicial complex, and a simplicial complex such that all subsets of its underlying subset are simplices is also called a simplex.

How to Cite This Entry:
Simplex (abstract). Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Simplex_(abstract)&oldid=17512
This article was adapted from an original article by A.V. Khokhlov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article