Difference between revisions of "Schur index"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | s0834401.png | ||
+ | $#A+1 = 53 n = 2 | ||
+ | $#C+1 = 53 : ~/encyclopedia/old_files/data/S083/S.0803440 Schur index | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | The Schur index of a central simple algebra $ A $ | |
+ | over a field $ K $( | ||
+ | cf. [[Central simple algebra|Central simple algebra]]) is the degree of the division algebra $ D $ | ||
+ | such that $ A $ | ||
+ | is a full matrix algebra $ M _ {n} ( D) $ | ||
+ | over $ D $. | ||
− | + | Let $ G $ | |
+ | be a [[Finite group|finite group]], $ K $ | ||
+ | a [[Field|field]] and $ \overline{K}\; $ | ||
+ | the [[Algebraic closure|algebraic closure]] of $ K $. | ||
+ | Let $ V $ | ||
+ | be an irreducible $ \overline{K}\; [ G] $- | ||
+ | module with character $ \rho $( | ||
+ | cf. [[Irreducible module|Irreducible module]]). Let $ K( \rho ) $ | ||
+ | be obtained from $ K $ | ||
+ | by adjoining the values $ \rho ( g) $, | ||
+ | $ g \in G $. | ||
+ | The Schur index of the module $ V $, | ||
+ | $ m _ {K} ( V) $, | ||
+ | (or the Schur index of the character $ \rho $) | ||
+ | is the minimal degree of a field $ S $ | ||
+ | extending $ K( \rho ) $ | ||
+ | such that $ V $ | ||
+ | descends to $ S $, | ||
+ | i.e. such that there is an $ S[ G] $- | ||
+ | module $ W $ | ||
+ | for which $ V \simeq \overline{K}\; \otimes _ {S} W $. | ||
− | + | For a finite field $ K $ | |
+ | the Schur index is always $ 1 $, | ||
+ | [[#References|[a1]]]. | ||
− | The | + | A basic result on the Schur index is that for each $ K[ G] $- |
+ | module $ W $ | ||
+ | the multiplicity of $ V $ | ||
+ | in $ \overline{K}\; \otimes _ {K} W $ | ||
+ | is a multiple of $ m _ {K} ( V) $. | ||
+ | |||
+ | A field $ S \subset \overline{K}\; $ | ||
+ | is a splitting field for a finite group $ G $ | ||
+ | if each irreducible $ S[ G] $- | ||
+ | module is absolutely irreducible, i.e. if $ \overline{K}\; \otimes _ {S} V $ | ||
+ | is irreducible. The basic result on the Schur index quoted above readily leads to a proof of R. Brauer's result [[#References|[a1]]] that if $ d $ | ||
+ | is the exponent of a finite group $ G $( | ||
+ | i.e. $ d $ | ||
+ | is the smallest integer such that $ g ^ {d} = e $ | ||
+ | for all $ g \in G $), | ||
+ | then $ \mathbf Q ( 1 ^ {1/d} ) $ | ||
+ | is a splitting field for $ G $. | ||
+ | |||
+ | The set $ S( K) $ | ||
+ | of classes of central simple algebras over $ K $ | ||
+ | which occur as components of a group algebra $ K[ G] $ | ||
+ | for some finite group $ G $ | ||
+ | is a subgroup of the [[Brauer group|Brauer group]] $ \mathop{\rm Br} ( K) $ | ||
+ | of $ K $, | ||
+ | and is known as the Schur subgroup of $ \mathop{\rm Br} ( K) $. | ||
+ | Cf. [[#References|[a4]]] for results on the structure of $ S( K) $. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Brauer, "On the representation of a group of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083440/s08344054.png" /> in the field of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083440/s08344055.png" />-th roots of unity" ''Amer. J. Math.'' , '''67''' (1945) pp. 461–471</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> C.W. Curtis, I. Reiner, "Representation theory of finite groups and associative algebras" , Interscience (1962) pp. §90, §41</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> B. Huppert, "Finite groups" , '''2''' , Springer (1982) pp. §1</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> T. Yamada, "The Schur subgroup of the Brauer group" , Springer (1974)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Brauer, "On the representation of a group of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083440/s08344054.png" /> in the field of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/s/s083/s083440/s08344055.png" />-th roots of unity" ''Amer. J. Math.'' , '''67''' (1945) pp. 461–471</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> C.W. Curtis, I. Reiner, "Representation theory of finite groups and associative algebras" , Interscience (1962) pp. §90, §41</TD></TR><TR><TD valign="top">[a3]</TD> <TD valign="top"> B. Huppert, "Finite groups" , '''2''' , Springer (1982) pp. §1</TD></TR><TR><TD valign="top">[a4]</TD> <TD valign="top"> T. Yamada, "The Schur subgroup of the Brauer group" , Springer (1974)</TD></TR></table> |
Latest revision as of 08:12, 6 June 2020
The Schur index of a central simple algebra $ A $
over a field $ K $(
cf. Central simple algebra) is the degree of the division algebra $ D $
such that $ A $
is a full matrix algebra $ M _ {n} ( D) $
over $ D $.
Let $ G $ be a finite group, $ K $ a field and $ \overline{K}\; $ the algebraic closure of $ K $. Let $ V $ be an irreducible $ \overline{K}\; [ G] $- module with character $ \rho $( cf. Irreducible module). Let $ K( \rho ) $ be obtained from $ K $ by adjoining the values $ \rho ( g) $, $ g \in G $. The Schur index of the module $ V $, $ m _ {K} ( V) $, (or the Schur index of the character $ \rho $) is the minimal degree of a field $ S $ extending $ K( \rho ) $ such that $ V $ descends to $ S $, i.e. such that there is an $ S[ G] $- module $ W $ for which $ V \simeq \overline{K}\; \otimes _ {S} W $.
For a finite field $ K $ the Schur index is always $ 1 $, [a1].
A basic result on the Schur index is that for each $ K[ G] $- module $ W $ the multiplicity of $ V $ in $ \overline{K}\; \otimes _ {K} W $ is a multiple of $ m _ {K} ( V) $.
A field $ S \subset \overline{K}\; $ is a splitting field for a finite group $ G $ if each irreducible $ S[ G] $- module is absolutely irreducible, i.e. if $ \overline{K}\; \otimes _ {S} V $ is irreducible. The basic result on the Schur index quoted above readily leads to a proof of R. Brauer's result [a1] that if $ d $ is the exponent of a finite group $ G $( i.e. $ d $ is the smallest integer such that $ g ^ {d} = e $ for all $ g \in G $), then $ \mathbf Q ( 1 ^ {1/d} ) $ is a splitting field for $ G $.
The set $ S( K) $ of classes of central simple algebras over $ K $ which occur as components of a group algebra $ K[ G] $ for some finite group $ G $ is a subgroup of the Brauer group $ \mathop{\rm Br} ( K) $ of $ K $, and is known as the Schur subgroup of $ \mathop{\rm Br} ( K) $. Cf. [a4] for results on the structure of $ S( K) $.
References
[a1] | R. Brauer, "On the representation of a group of order ![]() ![]() |
[a2] | C.W. Curtis, I. Reiner, "Representation theory of finite groups and associative algebras" , Interscience (1962) pp. §90, §41 |
[a3] | B. Huppert, "Finite groups" , 2 , Springer (1982) pp. §1 |
[a4] | T. Yamada, "The Schur subgroup of the Brauer group" , Springer (1974) |
Schur index. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Schur_index&oldid=11986