Difference between revisions of "Riemann function"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
| Line 1: | Line 1: | ||
| + | <!-- | ||
| + | r0818801.png | ||
| + | $#A+1 = 30 n = 0 | ||
| + | $#C+1 = 30 : ~/encyclopedia/old_files/data/R081/R.0801880 Riemann function | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| + | |||
| + | {{TEX|auto}} | ||
| + | {{TEX|done}} | ||
| + | |||
The Riemann function in the theory of trigonometric series is a function introduced by B. Riemann (1851) (see [[#References|[1]]]) for studying the problem of the representation of a function by a [[Trigonometric series|trigonometric series]]. Let a series | The Riemann function in the theory of trigonometric series is a function introduced by B. Riemann (1851) (see [[#References|[1]]]) for studying the problem of the representation of a function by a [[Trigonometric series|trigonometric series]]. Let a series | ||
| − | + | $$ \tag{* } | |
| − | + | \frac{a _ {0} }{2} | |
| + | + \sum _ { n= } 1 ^ \infty ( a _ {n} \cos nx + b _ {n} \sin nx ) | ||
| + | $$ | ||
| − | + | with bounded sequences $ \{ a _ {n} \} , \{ b _ {n} \} $ | |
| + | be given. The Riemann function for this series is the function $ F $ | ||
| + | obtained by twice term-by-term integration of the series: | ||
| − | + | $$ | |
| + | F( x) = | ||
| + | \frac{a _ {0} x ^ {2} }{4} | ||
| + | - \sum _ { n= } 1 ^ \infty | ||
| + | \frac{1}{n ^ {2} } | ||
| + | ( a _ {n} \cos nx + b _ {n} \sin nx ) + Cx + D, | ||
| + | $$ | ||
| − | + | $$ | |
| + | C, D = \textrm{ const } . | ||
| + | $$ | ||
| − | + | Riemann's first theorem: Let the series (*) converge at a point $ x _ {0} $ | |
| + | to a number $ S $. | ||
| + | The Schwarzian derivative (cf. [[Riemann derivative|Riemann derivative]]) $ D _ {2} F( x _ {0} ) $ | ||
| + | then equals $ S $. | ||
| + | Riemann's second theorem: Let $ a _ {n} , b _ {n} \rightarrow 0 $ | ||
| + | as $ n \rightarrow \infty $. | ||
| + | Then at any point $ x $, | ||
| − | + | $$ | |
| + | \lim\limits _ {n \rightarrow \infty } | ||
| + | \frac{F( x+ h) + F( x- h) - 2F( x) }{h} | ||
| + | = 0; | ||
| + | $$ | ||
| − | + | moreover, the convergence is uniform on any interval, that is, $ F $ | |
| + | is a uniformly smooth function. | ||
| − | + | If the series (*) converges on $ [ 0, 2 \pi ] $ | |
| + | to $ f( x) $ | ||
| + | and if $ f \in L[ 0, 2 \pi ] $, | ||
| + | then $ D _ {2} F( x) = f( x) $ | ||
| + | for each $ x \in [ 0, 2 \pi ] $ | ||
| + | and | ||
| − | + | $$ | |
| + | F( x) = \int\limits _ { 0 } ^ { x } dt \int\limits _ { 0 } ^ { t } f( u) du + Cx + D. | ||
| + | $$ | ||
| − | + | Let $ a _ {n} , b _ {n} $ | |
| + | be real numbers tending to $ 0 $ | ||
| + | as $ n \rightarrow \infty $, | ||
| + | let | ||
| − | + | $$ | |
| + | \underline{S} ( x) = \ | ||
| + | \lim\limits _ {\overline{ {n \rightarrow \infty }}\; } S _ {n} ( x) \ \textrm{ and } \ \overline{S}\; ( x) = \overline{\lim\limits}\; | ||
| + | _ {n \rightarrow \infty } S _ {n} ( x) | ||
| + | $$ | ||
| − | + | be finite at a point $ x $, | |
| + | and let | ||
| − | Then the upper and lower Schwarzian derivatives | + | $$ |
| + | S( x) = | ||
| + | \frac{1}{2} | ||
| + | ( \underline{S} ( x) + \overline{S}\; ( x)),\ \ | ||
| + | \delta ( x) = | ||
| + | \frac{1}{2} | ||
| + | ( \overline{S}\; ( x) - \underline{S} ( x)). | ||
| + | $$ | ||
| + | |||
| + | Then the upper and lower Schwarzian derivatives $ \overline{D}\; _ {2} F( x) $ | ||
| + | and $ \underline{D} _ {2} F( x) $ | ||
| + | belong to $ [ S - \mu \delta , S + \mu \delta ] $, | ||
| + | where $ \mu $ | ||
| + | is an absolute constant. (The du Bois-Reymond lemma.) | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> B. Riemann, "Ueber die Darstellbarkeit einer Function durch eine trigonometrische Reihe" , ''Gesammelte Math. Abhandlungen'' , Dover, reprint (1957) pp. 227–264</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N.K. [N.K. Bari] Bary, "A treatise on trigonometric series" , Pergamon (1964) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> B. Riemann, "Ueber die Darstellbarkeit einer Function durch eine trigonometrische Reihe" , ''Gesammelte Math. Abhandlungen'' , Dover, reprint (1957) pp. 227–264</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N.K. [N.K. Bari] Bary, "A treatise on trigonometric series" , Pergamon (1964) (Translated from Russian)</TD></TR></table> | ||
| − | |||
| − | |||
====Comments==== | ====Comments==== | ||
Revision as of 08:11, 6 June 2020
The Riemann function in the theory of trigonometric series is a function introduced by B. Riemann (1851) (see [1]) for studying the problem of the representation of a function by a trigonometric series. Let a series
$$ \tag{* } \frac{a _ {0} }{2} + \sum _ { n= } 1 ^ \infty ( a _ {n} \cos nx + b _ {n} \sin nx ) $$
with bounded sequences $ \{ a _ {n} \} , \{ b _ {n} \} $ be given. The Riemann function for this series is the function $ F $ obtained by twice term-by-term integration of the series:
$$ F( x) = \frac{a _ {0} x ^ {2} }{4} - \sum _ { n= } 1 ^ \infty \frac{1}{n ^ {2} } ( a _ {n} \cos nx + b _ {n} \sin nx ) + Cx + D, $$
$$ C, D = \textrm{ const } . $$
Riemann's first theorem: Let the series (*) converge at a point $ x _ {0} $ to a number $ S $. The Schwarzian derivative (cf. Riemann derivative) $ D _ {2} F( x _ {0} ) $ then equals $ S $. Riemann's second theorem: Let $ a _ {n} , b _ {n} \rightarrow 0 $ as $ n \rightarrow \infty $. Then at any point $ x $,
$$ \lim\limits _ {n \rightarrow \infty } \frac{F( x+ h) + F( x- h) - 2F( x) }{h} = 0; $$
moreover, the convergence is uniform on any interval, that is, $ F $ is a uniformly smooth function.
If the series (*) converges on $ [ 0, 2 \pi ] $ to $ f( x) $ and if $ f \in L[ 0, 2 \pi ] $, then $ D _ {2} F( x) = f( x) $ for each $ x \in [ 0, 2 \pi ] $ and
$$ F( x) = \int\limits _ { 0 } ^ { x } dt \int\limits _ { 0 } ^ { t } f( u) du + Cx + D. $$
Let $ a _ {n} , b _ {n} $ be real numbers tending to $ 0 $ as $ n \rightarrow \infty $, let
$$ \underline{S} ( x) = \ \lim\limits _ {\overline{ {n \rightarrow \infty }}\; } S _ {n} ( x) \ \textrm{ and } \ \overline{S}\; ( x) = \overline{\lim\limits}\; _ {n \rightarrow \infty } S _ {n} ( x) $$
be finite at a point $ x $, and let
$$ S( x) = \frac{1}{2} ( \underline{S} ( x) + \overline{S}\; ( x)),\ \ \delta ( x) = \frac{1}{2} ( \overline{S}\; ( x) - \underline{S} ( x)). $$
Then the upper and lower Schwarzian derivatives $ \overline{D}\; _ {2} F( x) $ and $ \underline{D} _ {2} F( x) $ belong to $ [ S - \mu \delta , S + \mu \delta ] $, where $ \mu $ is an absolute constant. (The du Bois-Reymond lemma.)
References
| [1] | B. Riemann, "Ueber die Darstellbarkeit einer Function durch eine trigonometrische Reihe" , Gesammelte Math. Abhandlungen , Dover, reprint (1957) pp. 227–264 |
| [2] | N.K. [N.K. Bari] Bary, "A treatise on trigonometric series" , Pergamon (1964) (Translated from Russian) |
Comments
See also Riemann summation method.
For Riemann's function in the theory of differential equations see Riemann method.
Riemann function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Riemann_function&oldid=14654