Difference between revisions of "Ricci curvature"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
| Line 1: | Line 1: | ||
| − | + | <!-- | |
| + | r0817801.png | ||
| + | $#A+1 = 32 n = 0 | ||
| + | $#C+1 = 32 : ~/encyclopedia/old_files/data/R081/R.0801780 Ricci curvature | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| − | + | {{TEX|auto}} | |
| + | {{TEX|done}} | ||
| − | + | ''of a Riemannian manifold $ M $ | |
| + | at a point $ p \in M $'' | ||
| − | + | A number corresponding to each one-dimensional subspace of the tangent space $ M _ {p} $ | |
| + | by the formula | ||
| − | + | $$ | |
| + | r ( v) = \ | ||
| − | + | \frac{( c R ) ( v , v ) }{g ( v , v ) } | |
| + | , | ||
| + | $$ | ||
| − | + | where $ c R $ | |
| + | is the [[Ricci tensor|Ricci tensor]], $ v $ | ||
| + | is a vector generating the one-dimensional subspace and $ g $ | ||
| + | is the [[Metric tensor|metric tensor]] of the [[Riemannian manifold|Riemannian manifold]] $ M $. | ||
| + | The Ricci curvature can be expressed in terms of the sectional curvatures of $ M $. | ||
| + | Let $ K _ {p} ( \alpha , \beta ) $ | ||
| + | be the [[Sectional curvature|sectional curvature]] at the point $ p \in M $ | ||
| + | in the direction of the surface element defined by the vectors $ \alpha $ | ||
| + | and $ \beta $, | ||
| + | let $ l _ {1} \dots l _ {n-} 1 $ | ||
| + | be normalized vectors orthogonal to each other and to the vector $ v $, | ||
| + | and let $ n $ | ||
| + | be the dimension of $ M $; | ||
| + | then | ||
| − | + | $$ | |
| + | r ( v) = \ | ||
| + | \sum _ { i= } 1 ^ { n- } 1 K _ {p} ( v , l _ {i} ) . | ||
| + | $$ | ||
| + | |||
| + | For manifolds $ M $ | ||
| + | of dimension greater than two the following proposition is valid: If the Ricci curvature at a point $ p \in M $ | ||
| + | has one and the same value $ r $ | ||
| + | in all directions $ v $, | ||
| + | then the Ricci curvature has one and the same value $ r $ | ||
| + | at all points of the manifold. Manifolds of constant Ricci curvature are called Einstein spaces. The Ricci tensor of an Einstein space is of the form $ c R = r g $, | ||
| + | where $ r $ | ||
| + | is the Ricci curvature. For an Einstein space the following equality holds: | ||
| + | |||
| + | $$ | ||
| + | n R _ {ij} R ^ {ij} - s ^ {2} = 0 , | ||
| + | $$ | ||
| + | |||
| + | where $ R _ {ij} $, | ||
| + | $ R ^ {ij} $ | ||
| + | are the covariant and contravariant components of the Ricci tensor, $ n $ | ||
| + | is the dimension of the space and $ s $ | ||
| + | is the scalar curvature of the space. | ||
The Ricci curvature can be defined by similar formulas also on pseudo-Riemannian manifolds; in this case the vector is assumed to be anisotropic. | The Ricci curvature can be defined by similar formulas also on pseudo-Riemannian manifolds; in this case the vector is assumed to be anisotropic. | ||
| Line 19: | Line 67: | ||
From the Ricci curvature the Ricci tensor can be recovered uniquely: | From the Ricci curvature the Ricci tensor can be recovered uniquely: | ||
| − | + | $$ | |
| + | ( c R ) ( u , v ) = | ||
| + | $$ | ||
| − | + | $$ | |
| + | = \ | ||
| + | |||
| + | \frac{1}{2} | ||
| + | [ r ( u + v ) g ( u + v , u + v ) | ||
| + | - r ( u) g ( u , u ) - r ( v) g ( v , v ) ] . | ||
| + | $$ | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> D. Gromoll, W. Klingenberg, W. Meyer, "Riemannsche Geometrie im Grossen" , Springer (1968)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A.Z. Petrov, "Einstein spaces" , Pergamon (1969) (Translated from Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> D. Gromoll, W. Klingenberg, W. Meyer, "Riemannsche Geometrie im Grossen" , Springer (1968)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A.Z. Petrov, "Einstein spaces" , Pergamon (1969) (Translated from Russian)</TD></TR></table> | ||
| − | |||
| − | |||
====Comments==== | ====Comments==== | ||
| − | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> N.J. Hicks, "Notes on differential geometry" , v. Nostrand (1965)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> A.L. Besse, "Einstein manifolds" , Springer (1987)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> N.J. Hicks, "Notes on differential geometry" , v. Nostrand (1965)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> A.L. Besse, "Einstein manifolds" , Springer (1987)</TD></TR></table> | ||
Revision as of 08:11, 6 June 2020
of a Riemannian manifold $ M $
at a point $ p \in M $
A number corresponding to each one-dimensional subspace of the tangent space $ M _ {p} $ by the formula
$$ r ( v) = \ \frac{( c R ) ( v , v ) }{g ( v , v ) } , $$
where $ c R $ is the Ricci tensor, $ v $ is a vector generating the one-dimensional subspace and $ g $ is the metric tensor of the Riemannian manifold $ M $. The Ricci curvature can be expressed in terms of the sectional curvatures of $ M $. Let $ K _ {p} ( \alpha , \beta ) $ be the sectional curvature at the point $ p \in M $ in the direction of the surface element defined by the vectors $ \alpha $ and $ \beta $, let $ l _ {1} \dots l _ {n-} 1 $ be normalized vectors orthogonal to each other and to the vector $ v $, and let $ n $ be the dimension of $ M $; then
$$ r ( v) = \ \sum _ { i= } 1 ^ { n- } 1 K _ {p} ( v , l _ {i} ) . $$
For manifolds $ M $ of dimension greater than two the following proposition is valid: If the Ricci curvature at a point $ p \in M $ has one and the same value $ r $ in all directions $ v $, then the Ricci curvature has one and the same value $ r $ at all points of the manifold. Manifolds of constant Ricci curvature are called Einstein spaces. The Ricci tensor of an Einstein space is of the form $ c R = r g $, where $ r $ is the Ricci curvature. For an Einstein space the following equality holds:
$$ n R _ {ij} R ^ {ij} - s ^ {2} = 0 , $$
where $ R _ {ij} $, $ R ^ {ij} $ are the covariant and contravariant components of the Ricci tensor, $ n $ is the dimension of the space and $ s $ is the scalar curvature of the space.
The Ricci curvature can be defined by similar formulas also on pseudo-Riemannian manifolds; in this case the vector is assumed to be anisotropic.
From the Ricci curvature the Ricci tensor can be recovered uniquely:
$$ ( c R ) ( u , v ) = $$
$$ = \ \frac{1}{2} [ r ( u + v ) g ( u + v , u + v ) - r ( u) g ( u , u ) - r ( v) g ( v , v ) ] . $$
References
| [1] | D. Gromoll, W. Klingenberg, W. Meyer, "Riemannsche Geometrie im Grossen" , Springer (1968) |
| [2] | A.Z. Petrov, "Einstein spaces" , Pergamon (1969) (Translated from Russian) |
Comments
References
| [a1] | N.J. Hicks, "Notes on differential geometry" , v. Nostrand (1965) |
| [a2] | A.L. Besse, "Einstein manifolds" , Springer (1987) |
Ricci curvature. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Ricci_curvature&oldid=12970