|
|
Line 1: |
Line 1: |
− | A limit of a function of several variables in which the passage to the limit is performed successively in the different variables. Let, for example, a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081290/r0812901.png" /> of two variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081290/r0812902.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081290/r0812903.png" /> be defined on a set of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081290/r0812904.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081290/r0812905.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081290/r0812906.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081290/r0812907.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081290/r0812908.png" /> be limit points of the sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081290/r0812909.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081290/r08129010.png" />, respectively, or the symbol <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081290/r08129011.png" /> (if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081290/r08129012.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081290/r08129013.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081290/r08129014.png" /> and, respectively, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081290/r08129015.png" /> may be infinities with signs: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081290/r08129016.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081290/r08129017.png" />). If for any fixed <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081290/r08129018.png" /> the limit
| + | <!-- |
| + | r0812901.png |
| + | $#A+1 = 42 n = 0 |
| + | $#C+1 = 42 : ~/encyclopedia/old_files/data/R081/R.0801290 Repeated limit |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081290/r08129019.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | exists, and for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081290/r08129020.png" /> the limit
| + | A limit of a function of several variables in which the passage to the limit is performed successively in the different variables. Let, for example, a function $ f $ |
| + | of two variables $ x $ |
| + | and $ y $ |
| + | be defined on a set of the form $ X \times Y $, |
| + | $ x \in X \subset \mathbf R ^ {m} $, |
| + | $ y \in Y \subset \mathbf R ^ {n} $, |
| + | and let $ x _ {0} $ |
| + | and $ y _ {0} $ |
| + | be limit points of the sets $ X $ |
| + | and $ Y $, |
| + | respectively, or the symbol $ \infty $( |
| + | if $ m = 1 $ |
| + | or $ n = 1 $, |
| + | $ x _ {0} $ |
| + | and, respectively, $ y _ {0} $ |
| + | may be infinities with signs: $ + \infty $, |
| + | $ - \infty $). |
| + | If for any fixed $ y \in Y $ |
| + | the limit |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081290/r08129021.png" /></td> </tr></table>
| + | $$ \tag{1 } |
| + | \phi ( y) = \lim\limits _ {x \rightarrow x _ {0} } f( x, y) |
| + | $$ |
| + | |
| + | exists, and for $ \phi ( y) $ |
| + | the limit |
| + | |
| + | $$ |
| + | \lim\limits _ {y \rightarrow y _ {0} } \phi ( y) |
| + | $$ |
| | | |
| exists, then this limit is called the repeated limit | | exists, then this limit is called the repeated limit |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081290/r08129022.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
| + | $$ \tag{2 } |
| + | \lim\limits _ {y \rightarrow y _ {0} } \lim\limits _ {x \rightarrow x _ {0} } f( x, y) |
| + | $$ |
| | | |
− | of the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081290/r08129023.png" /> at the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081290/r08129024.png" />. Similarly one defines the repeated limit | + | of the function $ f $ |
| + | at the point $ ( x _ {0} , y _ {0} ) $. |
| + | Similarly one defines the repeated limit |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081290/r08129025.png" /></td> <td valign="top" style="width:5%;text-align:right;">(3)</td></tr></table>
| + | $$ \tag{3 } |
| + | \lim\limits _ {x \rightarrow x _ {0} } \lim\limits _ {y \rightarrow y _ {0} } f( x, y). |
| + | $$ |
| | | |
| If the (finite or infinite) [[Double limit|double limit]] | | If the (finite or infinite) [[Double limit|double limit]] |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081290/r08129026.png" /></td> <td valign="top" style="width:5%;text-align:right;">(4)</td></tr></table>
| + | $$ \tag{4 } |
| + | \lim\limits _ {( x, y) \rightarrow ( x _ {0} , y _ {0} ) } f( x, y) |
| + | $$ |
| | | |
− | exists, and if for any fixed <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081290/r08129027.png" /> the finite limit (1) exists, then the repeated limit (2) also exists, and it is equal to the double limit (4). | + | exists, and if for any fixed $ y \in Y $ |
| + | the finite limit (1) exists, then the repeated limit (2) also exists, and it is equal to the double limit (4). |
| | | |
− | If for each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081290/r08129028.png" /> the finite limit (1) exists, for each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081290/r08129029.png" /> the finite limit | + | If for each $ y \in Y $ |
| + | the finite limit (1) exists, for each $ x \in X $ |
| + | the finite limit |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081290/r08129030.png" /></td> </tr></table>
| + | $$ |
| + | \psi ( x) = \lim\limits _ {y \rightarrow y _ {0} } f( x, y) |
| + | $$ |
| | | |
− | exists, and for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081290/r08129031.png" /> the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081290/r08129032.png" /> tends to a limit function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081290/r08129033.png" /> uniformly in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081290/r08129034.png" />, then both the repeated limits (2) and (3) exist and are equal to one another. | + | exists, and for $ x \rightarrow x _ {0} $ |
| + | the function $ f( x, y) $ |
| + | tends to a limit function $ \phi ( y) $ |
| + | uniformly in $ y \in Y $, |
| + | then both the repeated limits (2) and (3) exist and are equal to one another. |
| | | |
− | If the sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081290/r08129035.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081290/r08129036.png" /> are sets of integers, then the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081290/r08129037.png" /> is called a double sequence, and the values of the argument are written as subscripts: | + | If the sets $ X $ |
| + | and $ Y $ |
| + | are sets of integers, then the function $ f $ |
| + | is called a double sequence, and the values of the argument are written as subscripts: |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081290/r08129038.png" /></td> </tr></table>
| + | $$ |
| + | f( m, n) = u _ {mn} , |
| + | $$ |
| | | |
| and the repeated limits | | and the repeated limits |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081290/r08129039.png" /></td> </tr></table>
| + | $$ |
| + | \lim\limits _ {n \rightarrow \infty } \lim\limits _ {m \rightarrow \infty } u _ {mn} \ \textrm{ and } \ \lim\limits _ {m \rightarrow \infty } \lim\limits _ {n \rightarrow \infty } u _ {mn} $$ |
| | | |
| are called the repeated limits of the double sequence. | | are called the repeated limits of the double sequence. |
| | | |
− | The concept of a repeated limit has been generalized to the case where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081290/r08129040.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081290/r08129041.png" /> and the set of values of the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r081/r081290/r08129042.png" /> are subsets of certain topological spaces. | + | The concept of a repeated limit has been generalized to the case where $ X $ |
| + | and $ Y $ |
| + | and the set of values of the function $ f $ |
| + | are subsets of certain topological spaces. |
A limit of a function of several variables in which the passage to the limit is performed successively in the different variables. Let, for example, a function $ f $
of two variables $ x $
and $ y $
be defined on a set of the form $ X \times Y $,
$ x \in X \subset \mathbf R ^ {m} $,
$ y \in Y \subset \mathbf R ^ {n} $,
and let $ x _ {0} $
and $ y _ {0} $
be limit points of the sets $ X $
and $ Y $,
respectively, or the symbol $ \infty $(
if $ m = 1 $
or $ n = 1 $,
$ x _ {0} $
and, respectively, $ y _ {0} $
may be infinities with signs: $ + \infty $,
$ - \infty $).
If for any fixed $ y \in Y $
the limit
$$ \tag{1 }
\phi ( y) = \lim\limits _ {x \rightarrow x _ {0} } f( x, y)
$$
exists, and for $ \phi ( y) $
the limit
$$
\lim\limits _ {y \rightarrow y _ {0} } \phi ( y)
$$
exists, then this limit is called the repeated limit
$$ \tag{2 }
\lim\limits _ {y \rightarrow y _ {0} } \lim\limits _ {x \rightarrow x _ {0} } f( x, y)
$$
of the function $ f $
at the point $ ( x _ {0} , y _ {0} ) $.
Similarly one defines the repeated limit
$$ \tag{3 }
\lim\limits _ {x \rightarrow x _ {0} } \lim\limits _ {y \rightarrow y _ {0} } f( x, y).
$$
If the (finite or infinite) double limit
$$ \tag{4 }
\lim\limits _ {( x, y) \rightarrow ( x _ {0} , y _ {0} ) } f( x, y)
$$
exists, and if for any fixed $ y \in Y $
the finite limit (1) exists, then the repeated limit (2) also exists, and it is equal to the double limit (4).
If for each $ y \in Y $
the finite limit (1) exists, for each $ x \in X $
the finite limit
$$
\psi ( x) = \lim\limits _ {y \rightarrow y _ {0} } f( x, y)
$$
exists, and for $ x \rightarrow x _ {0} $
the function $ f( x, y) $
tends to a limit function $ \phi ( y) $
uniformly in $ y \in Y $,
then both the repeated limits (2) and (3) exist and are equal to one another.
If the sets $ X $
and $ Y $
are sets of integers, then the function $ f $
is called a double sequence, and the values of the argument are written as subscripts:
$$
f( m, n) = u _ {mn} ,
$$
and the repeated limits
$$
\lim\limits _ {n \rightarrow \infty } \lim\limits _ {m \rightarrow \infty } u _ {mn} \ \textrm{ and } \ \lim\limits _ {m \rightarrow \infty } \lim\limits _ {n \rightarrow \infty } u _ {mn} $$
are called the repeated limits of the double sequence.
The concept of a repeated limit has been generalized to the case where $ X $
and $ Y $
and the set of values of the function $ f $
are subsets of certain topological spaces.