Namespaces
Variants
Actions

Difference between revisions of "Radical of an ideal"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
''<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077120/r0771201.png" /> in a commutative associative ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077120/r0771202.png" />''
+
<!--
 +
r0771201.png
 +
$#A+1 = 39 n = 0
 +
$#C+1 = 39 : ~/encyclopedia/old_files/data/R077/R.0707120 Radical of an ideal
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
The set of all elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077120/r0771203.png" /> some power of which is contained in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077120/r0771204.png" />. This set is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077120/r0771205.png" />. It is an [[Ideal|ideal]] in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077120/r0771206.png" />; moreover, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077120/r0771207.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077120/r0771208.png" />.
+
{{TEX|auto}}
 +
{{TEX|done}}
  
A generalization of this idea is that of the radical of a submodule. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077120/r0771209.png" /> be a [[Module|module]] over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077120/r07712010.png" /> and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077120/r07712011.png" /> be a submodule of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077120/r07712012.png" />. The radical of the submodule <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077120/r07712013.png" /> is the set of all elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077120/r07712014.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077120/r07712015.png" /> for some integer <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077120/r07712016.png" /> (in general, depending on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077120/r07712017.png" />). The radical of a submodule is an ideal in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077120/r07712018.png" />.
+
'' $  A $
 +
in a commutative associative ring  $  R $''
  
 +
The set of all elements  $  b \in R $
 +
some power of which is contained in  $  A $.
 +
This set is denoted by  $  \sqrt A $.
 +
It is an [[Ideal|ideal]] in  $  R $;
 +
moreover,  $  \sqrt A \supset A $
 +
and  $  \sqrt {\sqrt A } = \sqrt A $.
  
 +
A generalization of this idea is that of the radical of a submodule. Let  $  M $
 +
be a [[Module|module]] over  $  R $
 +
and let  $  N $
 +
be a submodule of  $  M $.
 +
The radical of the submodule  $  N $
 +
is the set of all elements  $  a \in R $
 +
such that  $  a  ^ {n} M \subset  N $
 +
for some integer  $  n $(
 +
in general, depending on  $  a $).
 +
The radical of a submodule is an ideal in  $  R $.
  
 
====Comments====
 
====Comments====
Consider the quotient ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077120/r07712019.png" /> and the natural quotient homomorphism <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077120/r07712020.png" />. The radical of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077120/r07712021.png" /> is the inverse image of the nil radical (cf. [[Nil ideal|Nil ideal]]) of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077120/r07712022.png" />.
+
Consider the quotient ring $  R/A $
 +
and the natural quotient homomorphism $  \pi : R \rightarrow R/A $.  
 +
The radical of $  A $
 +
is the inverse image of the nil radical (cf. [[Nil ideal|Nil ideal]]) of $  R/A $.
  
 
Radical ideal is the phrase sometimes used to denote an ideal that is equal to its radical.
 
Radical ideal is the phrase sometimes used to denote an ideal that is equal to its radical.
  
Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077120/r07712023.png" /> be an algebraically closed field. To each ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077120/r07712024.png" /> one associates the algebraic set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077120/r07712025.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077120/r07712026.png" />. The Hilbert Nullstellensatz says that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077120/r07712027.png" />. Thus there is in this setting a bijective correspondence between radical ideals and algebraic sets.
+
Let $  k $
 +
be an algebraically closed field. To each ideal $  A \subset  R [ X _ {1} \dots X _ {n} ] $
 +
one associates the algebraic set $  V( A) \subset  k  ^ {n} $,
 +
$  V( A) = \{ {a = ( a _ {1} \dots a _ {n} ) \in k  ^ {n} } : {f( a) = 0 \textrm{ for  all  }  f \in A } \} $.  
 +
The Hilbert Nullstellensatz says that $  \{ {g \in R } : {g( x) = 0 \textrm{ for  all  }  x \in V( A) } \} = \sqrt A $.  
 +
Thus there is in this setting a bijective correspondence between radical ideals and algebraic sets.
  
In the setting of affine schemes (cf. [[Affine scheme|Affine scheme]]) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077120/r07712028.png" /> this takes the following form. To each ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077120/r07712029.png" /> one associates the closed subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077120/r07712030.png" />. Conversely, to each closed subspace <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077120/r07712031.png" /> one associates the ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077120/r07712032.png" />. Then again <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077120/r07712033.png" /> because <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077120/r07712034.png" /> is the intersection of all prime ideals containing <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077120/r07712035.png" />, and, again, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077120/r07712036.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077120/r07712037.png" /> set up a bijective correspondence between radical ideals and closed subsets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077120/r07712038.png" />. The difference with the setting of the Nullstellensatz is that in that case only prime ideals of the form <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/r/r077/r077120/r07712039.png" /> are considered.
+
In the setting of affine schemes (cf. [[Affine scheme|Affine scheme]]) $  \mathop{\rm Spec} ( R) $
 +
this takes the following form. To each ideal $  A \subset  R $
 +
one associates the closed subspace $  \mathop{\rm Spec} ( R/A) = V( A) = \{ {\mathfrak p } : {\mathfrak p  \textrm{ is  a  "prime" ideal  such  that  }  \mathfrak p \supset A } \} $.  
 +
Conversely, to each closed subspace $  V \subset  \mathop{\rm Spec} ( R) $
 +
one associates the ideal $  I( V)= \{ {f \in R } : {f \in \mathfrak p  \textrm{ for  all  }  \mathfrak p \in V } \} $.  
 +
Then again $  IV( A) = \sqrt A $
 +
because $  \sqrt A $
 +
is the intersection of all prime ideals containing $  A $,  
 +
and, again, $  I $
 +
and $  V $
 +
set up a bijective correspondence between radical ideals and closed subsets of $  \mathop{\rm Spec} ( R) $.  
 +
The difference with the setting of the Nullstellensatz is that in that case only prime ideals of the form $  ( X _ {1} - a _ {1} \dots X _ {n} - a _ {n} ) $
 +
are considered.
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  P.M. Cohn,  "Algebra" , '''II''' , Wiley  (1977)  pp. Sects. 11.2, 11.10</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  A. Grothendieck,  "Eléments de géométrie algébrique. I: Le language des schémas"  ''Publ. Math. IHES'' , '''20'''  (1960)  pp. 80</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  P.M. Cohn,  "Algebra" , '''II''' , Wiley  (1977)  pp. Sects. 11.2, 11.10</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  A. Grothendieck,  "Eléments de géométrie algébrique. I: Le language des schémas"  ''Publ. Math. IHES'' , '''20'''  (1960)  pp. 80</TD></TR></table>

Latest revision as of 08:09, 6 June 2020


$ A $ in a commutative associative ring $ R $

The set of all elements $ b \in R $ some power of which is contained in $ A $. This set is denoted by $ \sqrt A $. It is an ideal in $ R $; moreover, $ \sqrt A \supset A $ and $ \sqrt {\sqrt A } = \sqrt A $.

A generalization of this idea is that of the radical of a submodule. Let $ M $ be a module over $ R $ and let $ N $ be a submodule of $ M $. The radical of the submodule $ N $ is the set of all elements $ a \in R $ such that $ a ^ {n} M \subset N $ for some integer $ n $( in general, depending on $ a $). The radical of a submodule is an ideal in $ R $.

Comments

Consider the quotient ring $ R/A $ and the natural quotient homomorphism $ \pi : R \rightarrow R/A $. The radical of $ A $ is the inverse image of the nil radical (cf. Nil ideal) of $ R/A $.

Radical ideal is the phrase sometimes used to denote an ideal that is equal to its radical.

Let $ k $ be an algebraically closed field. To each ideal $ A \subset R [ X _ {1} \dots X _ {n} ] $ one associates the algebraic set $ V( A) \subset k ^ {n} $, $ V( A) = \{ {a = ( a _ {1} \dots a _ {n} ) \in k ^ {n} } : {f( a) = 0 \textrm{ for all } f \in A } \} $. The Hilbert Nullstellensatz says that $ \{ {g \in R } : {g( x) = 0 \textrm{ for all } x \in V( A) } \} = \sqrt A $. Thus there is in this setting a bijective correspondence between radical ideals and algebraic sets.

In the setting of affine schemes (cf. Affine scheme) $ \mathop{\rm Spec} ( R) $ this takes the following form. To each ideal $ A \subset R $ one associates the closed subspace $ \mathop{\rm Spec} ( R/A) = V( A) = \{ {\mathfrak p } : {\mathfrak p \textrm{ is a "prime" ideal such that } \mathfrak p \supset A } \} $. Conversely, to each closed subspace $ V \subset \mathop{\rm Spec} ( R) $ one associates the ideal $ I( V)= \{ {f \in R } : {f \in \mathfrak p \textrm{ for all } \mathfrak p \in V } \} $. Then again $ IV( A) = \sqrt A $ because $ \sqrt A $ is the intersection of all prime ideals containing $ A $, and, again, $ I $ and $ V $ set up a bijective correspondence between radical ideals and closed subsets of $ \mathop{\rm Spec} ( R) $. The difference with the setting of the Nullstellensatz is that in that case only prime ideals of the form $ ( X _ {1} - a _ {1} \dots X _ {n} - a _ {n} ) $ are considered.

References

[a1] P.M. Cohn, "Algebra" , II , Wiley (1977) pp. Sects. 11.2, 11.10
[a2] A. Grothendieck, "Eléments de géométrie algébrique. I: Le language des schémas" Publ. Math. IHES , 20 (1960) pp. 80
How to Cite This Entry:
Radical of an ideal. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Radical_of_an_ideal&oldid=14813
This article was adapted from an original article by O.A. Ivanova (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article