Difference between revisions of "Pseudo-group"
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
|||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | p0757001.png | ||
+ | $#A+1 = 125 n = 0 | ||
+ | $#C+1 = 125 : ~/encyclopedia/old_files/data/P075/P.0705700 Pseudo\AAhgroup | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | ''of transformations of a differentiable manifold $ M $'' | |
− | + | A family of diffeomorphisms from open subsets of $ M $ | |
+ | into $ M $ | ||
+ | that is closed under composition of mappings, transition to the inverse mapping, as well as under restriction and glueing of mappings. More precisely, a pseudo-group of transformations $ \Gamma $ | ||
+ | of a manifold $ M $ | ||
+ | consists of local transformations, i.e. pairs of the form $ p =( D _ {p} , \overline{p}\; ) $ | ||
+ | where $ D _ {p} $ | ||
+ | is an open subset of $ M $ | ||
+ | and $ \overline{p}\; $ | ||
+ | is a [[Diffeomorphism|diffeomorphism]] $ D _ {p} \rightarrow M $, | ||
+ | where it is moreover assumed that 1) $ p , q \in \Gamma $ | ||
+ | implies $ p \circ q = ( \overline{q}\; {} ^ {-} 1 ( D _ {p} \cap \overline{q}\; ( D _ {q} ) ) , \overline{p}\; \circ \overline{q}\; ) \in \Gamma $; | ||
+ | 2) $ p \in \Gamma $ | ||
+ | implies $ p ^ {-} 1 = ( \overline{p}\; ( D _ {p} ) , \overline{p}\; {} ^ {-} 1 ) \in \Gamma $; | ||
+ | 3) $ ( M , \mathop{\rm id} ) \in \Gamma $; | ||
+ | and 4) if $ \overline{p}\; $ | ||
+ | is a diffeomorphism from an open subset $ D \subset M $ | ||
+ | into $ M $ | ||
+ | and $ D = \cup _ \alpha D _ \alpha $, | ||
+ | where $ D _ \alpha $ | ||
+ | are open sets in $ M $, | ||
+ | then $ ( D , \overline{p}\; ) \in \Gamma \iff ( D _ \alpha , \overline{p}\; \mid _ {D _ \alpha } ) \in \Gamma $ | ||
+ | for any $ \alpha $. | ||
+ | With necessary changes in 1)–4) one can also define pseudo-groups of transformations of an arbitrary topological space (cf. [[#References|[7]]]) or even of an arbitrary set. As a group of transformations, a pseudo-group of transformations determines an equivalence relation on $ M $; | ||
+ | the equivalence classes are called its orbits. A pseudo-group $ \Gamma $ | ||
+ | of transformations of a manifold $ M $ | ||
+ | is called transitive if $ M $ | ||
+ | is its only orbit, and is called primitive if $ M $ | ||
+ | does not admit non-trivial $ \Gamma $- | ||
+ | invariant foliations (otherwise the pseudo-group is called imprimitive). | ||
− | + | A pseudo-group $ \Gamma $ | |
+ | of transformations of a differentiable manifold is called a Lie pseudo-group of transformations defined by a system $ S $ | ||
+ | of partial differential equations if $ \Gamma $ | ||
+ | consists of exactly those local transformations of $ M $ | ||
+ | that satisfy the system $ S $. | ||
+ | E.g., the pseudo-group of conformal transformations of the plane is a Lie pseudo-group of transformations, determined by the Cauchy–Riemann equations (cf. [[Cauchy-Riemann equations]]). The order of a Lie pseudo-group of transformations is the minimum order of its defining system of differential equations. | ||
− | + | Examples of Lie pseudo-groups of transformations. a) The pseudo-group of all holomorphic local transformations of $ n $- | |
+ | dimensional complex space $ \mathbf C ^ {n} $. | ||
− | + | b) The pseudo-group of all holomorphic local transformations of $ \mathbf C ^ {n} $ | |
+ | with constant [[Jacobian|Jacobian]]. | ||
− | + | c) The pseudo-group of all holomorphic local transformations of $ \mathbf C ^ {n} $ | |
+ | with Jacobian 1. | ||
− | + | d) The Hamilton pseudo-group of all holomorphic local transformations of $ \mathbf C ^ {n} $( | |
+ | $ n $ | ||
+ | even) preserving the differential $ 2 $- | ||
+ | form | ||
− | + | $$ | |
+ | \omega = d z ^ {1} \wedge | ||
+ | d z ^ {2} + d z ^ {3} \wedge | ||
+ | d z ^ {4} + \dots + d z ^ {n-} 1 | ||
+ | \wedge d z ^ {n} . | ||
+ | $$ | ||
− | + | e) The pseudo-group of all holomorphic local transformations of $ \mathbf C ^ {n} $ | |
+ | preserving $ \omega $ | ||
+ | up to constant factor. | ||
+ | |||
+ | f) The contact pseudo-group of all holomorphic local transformations of $ \mathbf C ^ {n} $( | ||
+ | $ n = 2 m + 1 $, | ||
+ | $ m \geq 1 $) | ||
+ | preserving the differential $ 1 $- | ||
+ | form | ||
+ | |||
+ | $$ | ||
+ | d z ^ {n} + | ||
+ | \sum _ { i= } 1 ^ { m } | ||
+ | ( z ^ {i} d z ^ {m+} i - | ||
+ | z ^ {m+} i d z ^ {i} ) | ||
+ | $$ | ||
up to a factor (which can be a function). | up to a factor (which can be a function). | ||
Line 27: | Line 94: | ||
The order of the Lie pseudo-groups of Examples a), c)–f) is 1, while in b) the order is 2. | The order of the Lie pseudo-groups of Examples a), c)–f) is 1, while in b) the order is 2. | ||
− | Any Lie group | + | Any Lie group $ G $ |
+ | of transformations of a manifold $ M $ | ||
+ | determines a pseudo-group $ \Gamma ( G) $ | ||
+ | of transformations, consisting of the restrictions of the transformations from $ G $ | ||
+ | onto open subsets of $ M $. | ||
+ | A pseudo-group of transformations of the form $ \Gamma ( G) $ | ||
+ | is called globalizable. E.g., a pseudo-group of local conformal transformations of the sphere $ S ^ {n} $ | ||
+ | is globalizable for $ n > 2 $ | ||
+ | and not globalizable for $ n = 2 $. | ||
+ | |||
+ | A Lie pseudo-group of transformations is said to be of finite type if there is a natural number $ d $ | ||
+ | such that every local transformation $ p \in \Gamma $ | ||
+ | is uniquely determined by its $ d $- | ||
+ | jet at some point $ x \in D _ {p} $; | ||
+ | the smallest such $ d $ | ||
+ | is called the degree, or type, of $ \Gamma $; | ||
+ | if such a $ d $ | ||
+ | does not exist, then $ \Gamma $ | ||
+ | is called a pseudo-group of transformations of infinite type. The pseudo-groups of Examples a)–f) are primitive Lie pseudo-groups of transformations of infinite type. | ||
− | + | Let $ \Gamma $ | |
+ | be a transitive Lie pseudo-group of transformations of an $ n $- | ||
+ | dimensional manifold $ M $ | ||
+ | and let $ G ^ {r} ( \Gamma ) $ | ||
+ | be the family of all $ r $- | ||
+ | jets of the local transformations in $ \Gamma $ | ||
+ | that preserve a point $ O \in M $, | ||
+ | i.e. those $ p \in \Gamma $ | ||
+ | for which $ O \in D _ {p} $ | ||
+ | and $ \overline{p}\; ( O) = O $. | ||
+ | The set $ G ^ {r} ( \Gamma ) $, | ||
+ | endowed with the natural structure of a Lie group, is called the $ r $- | ||
+ | th order isotropy group of $ \Gamma $( | ||
+ | $ G ^ {1} ( \Gamma ) $ | ||
+ | is also called the linear isotropy group of $ \Gamma $). | ||
+ | The Lie algebra $ \mathfrak g ^ {r} ( \Gamma ) $ | ||
+ | of $ \Gamma ^ {r} ( \Gamma ) $ | ||
+ | can be naturally imbedded in the Lie algebra of $ r $- | ||
+ | jets of vector fields on $ M $ | ||
+ | at $ O $. | ||
+ | If $ \Gamma $ | ||
+ | is a Lie pseudo-group of transformations of order one, then the kernel $ G ^ {(} r) ( \Gamma ) $ | ||
+ | of the natural homomorphism $ G ^ {r+} 1 ( \Gamma ) \rightarrow G ^ {r} ( \Gamma ) $ | ||
+ | depends, for any $ r \geq 1 $, | ||
+ | only on the linear isotropy group $ G ^ {1} ( \Gamma ) $, | ||
+ | and is called its $ r $- | ||
+ | th extension. A Lie pseudo-group of transformations $ \Gamma $ | ||
+ | of order one is of finite type $ d $ | ||
+ | if and only if | ||
− | + | $$ | |
+ | \mathop{\rm dim} G ^ {(} d- 1) | ||
+ | ( \Gamma ) \neq 0 \ \ | ||
+ | \textrm{ and } \ \ | ||
+ | \mathop{\rm dim} G ^ {(} d) | ||
+ | ( \Gamma ) = 0 . | ||
+ | $$ | ||
− | + | If, moreover, $ G ^ {1} ( \Gamma ) $ | |
+ | is irreducible, then $ d \leq 2 $( | ||
+ | cf. ). A Lie pseudo-group of transformations $ \Gamma $ | ||
+ | of order one is a pseudo-group of transformations of finite type only if, and in the complex case if and only if, the Lie algebra $ \mathfrak g ^ {1} $ | ||
+ | does not contain endomorphisms of rank 1 (cf. [[#References|[10]]]). Such linear Lie algebras are called elliptic. | ||
− | + | One has calculated the Lie algebras of all extensions $ G ^ {(} r) ( \Gamma ) $, | |
+ | $ r \geq 1 $, | ||
+ | where $ \Gamma $ | ||
+ | is a Lie pseudo-group of transformations of order one, in terms of the linear isotropy algebra. More precisely, the Lie algebra $ \mathfrak g ^ {(} r) ( \Gamma ) $ | ||
+ | of $ G ^ {(} r) ( \Gamma ) $ | ||
+ | consists of the $ ( r+ 1) $- | ||
+ | jets of vector fields on $ M $ | ||
+ | at $ O $ | ||
+ | having, in some local coordinate system $ ( x ^ {1} \dots x ^ {n} ) $, | ||
+ | the form | ||
− | + | $$ | |
+ | \sum v _ {i _ {0} \dots i _ {r} } ^ {i} x ^ {i _ {0} } \dots | ||
+ | x ^ {i _ {r} } | ||
− | + | \frac \partial {\partial x ^ {i} } | |
+ | , | ||
+ | $$ | ||
− | where | + | where $ v _ {i _ {0} \dots i _ {r} } ^ {i} $ |
+ | is an arbitrary tensor that is symmetric with respect to the lower indices and that satisfies the condition: For any fixed $ i _ {1} \dots i _ {r} $ | ||
+ | the matrix | ||
− | + | $$ | |
+ | \| v _ {j , i _ {1} \dots i _ {r} } ^ {i} \| _ {i , j = 1 } ^ {n} | ||
+ | $$ | ||
− | belongs to | + | belongs to $ \mathfrak g ^ {1} ( \Gamma ) $, |
+ | relative to some coordinate system $ ( x ^ {i} ) $. | ||
− | Let | + | Let $ M $ |
+ | be an $ n $- | ||
+ | dimensional differentiable manifold over the field $ K = \mathbf R $ | ||
+ | or $ \mathbf C $. | ||
+ | Every transitive Lie pseudo-group of transformations $ \Gamma $ | ||
+ | of order $ k $ | ||
+ | on a manifold $ M $ | ||
+ | coincides with the pseudo-group of all local automorphism of some $ G ^ {k} ( \Gamma ) $- | ||
+ | structure (cf. [[G-structure| $ G $- | ||
+ | structure]]) of order $ k $ | ||
+ | on $ M $( | ||
+ | Cartan's first fundamental theorem). The first classification of all primitive Lie pseudo-groups of infinite type was obtained by E. Cartan . According to his theorem, every primitive Lie pseudo-group of transformations of infinite type, consisting of holomorphic local transformations, is locally isomorphic to one of the pseudo-groups of Examples a)–f). This theorem has been repeatedly proved; its modern proofs lead to the study of certain filtered Lie algebras (cf. [[#References|[9]]]). The classification of these filtered Lie algebras can be given on the basis of the classification of simple graded Lie algebras (cf. [[#References|[3]]]). The classification of primitive pseudo-groups of transformations has also been obtained in the real case, and the condition of analyticity of the action of the pseudo-group of transformations has been replaced by the weaker condition of infinite differentiability (cf. [[#References|[8]]], [[#References|[9]]]). One has constructed certain abstract models of transitive Lie pseudo-groups, which came to play the same role in the theory of pseudo-groups of transformations of infinite type as do abstract Lie groups in the finite-dimensional case (cf. , [[#References|[9]]]). | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> S. Sternberg, "Lectures on differential geometry" , Prentice-Hall (1964) {{MR|0193578}} {{ZBL|0129.13102}} </TD></TR><TR><TD valign="top">[2a]</TD> <TD valign="top"> E. Cartan, "Sur la structure des groupes infinis de transformations" , ''Oeuvres complètes'' , '''2''' , Gauthier-Villars (1953) pp. 571–624 {{MR|1509054}} {{MR|1509040}} {{ZBL|36.0223.03}} {{ZBL|35.0176.04}} </TD></TR><TR><TD valign="top">[2b]</TD> <TD valign="top"> E. Cartan, "Sur la structure des groupes infinis de transformations" , ''Oeuvres complètes'' , '''2''' , Gauthier-Villars (1953) pp. 625–714 {{MR|1509054}} {{MR|1509040}} {{ZBL|36.0223.03}} {{ZBL|35.0176.04}} </TD></TR><TR><TD valign="top">[2c]</TD> <TD valign="top"> E. Cartan, "Les groupes de transformations continus, infinis, simples" , ''Oeuvres complètes'' , '''2''' , Gauthier-Villars (1953) pp. 857–925 {{MR|1509105}} {{ZBL|40.0193.02}} {{ZBL|38.0194.01}} </TD></TR><TR><TD valign="top">[2d]</TD> <TD valign="top"> E. Cartan, "Les groupes de transformations continus, infinis, simples" , ''Oeuvres complètes'' , '''2''' , Gauthier-Villars (1953) pp. 1335–1384 {{MR|1509105}} {{ZBL|40.0193.02}} {{ZBL|38.0194.01}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> V. Guillemin, "Infinite dimensional primitive Lie algebras" ''J. Diff. Geom.'' , '''4''' : 3 (1970) pp. 257–282 {{MR|0268233}} {{ZBL|0223.17007}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> S. Kobayashi, "Transformation groups in differential geometry" , Springer (1972) {{MR|0355886}} {{ZBL|0246.53031}} </TD></TR><TR><TD valign="top">[5a]</TD> <TD valign="top"> S. Kobayashi, T. Nagano, "On filtered Lie algebras and geometric structures I" ''J. Math. Mech.'' , '''13''' : 5 (1964) pp. 875–907 {{MR|0168704}} {{ZBL|0142.19504}} </TD></TR><TR><TD valign="top">[5b]</TD> <TD valign="top"> S. Kobayashi, T. Nagano, "On filtered Lie algebras and geometric structures III" ''J. Math. Mech.'' , '''14''' : 5 (1965) pp. 679–706 {{MR|0188364}} {{ZBL|}} </TD></TR><TR><TD valign="top">[6a]</TD> <TD valign="top"> M. Kuranishi, "On the local theory of continuous infinite pseudo groups I" ''Nagoya Math. J.'' , '''15''' (1959) pp. 225–260 {{MR|0116071}} {{ZBL|0212.56501}} </TD></TR><TR><TD valign="top">[6b]</TD> <TD valign="top"> M. Kuranishi, "On the local theory of continuous infinite pseudo groups II" ''Nagoya Math. J.'' , '''19''' (1961) pp. 55–91 {{MR|0142694}} {{ZBL|0212.56501}} </TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> P. Libermann, "Pseudogroupes infinitésimaux attachées aux pseudogroupes de Lie" ''Bull. Soc. Math. France'' , '''87''' : 4 (1959) pp. 409–425 {{MR|123279}} {{ZBL|}} </TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> S. Shnider, "The classification of real primitive infinite Lie algebras" ''J. Diff. Geom.'' , '''4''' : 1 (1970) pp. 81–89 {{MR|0285574}} {{ZBL|0244.17014}} </TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top"> I.M. Singer, S. Sternberg, "The infinite groups of Lie and Cartan. I. The transitive groups" ''J. d'Anal. Math.'' , '''15''' (1965) pp. 1–114 {{MR|0217822}} {{ZBL|0277.58008}} </TD></TR><TR><TD valign="top">[10]</TD> <TD valign="top"> R.L. Wilson, "Irreducible Lie algebras of infinite type" ''Proc. Amer. Math. Soc.'' , '''29''' : 2 (1971) pp. 243–249 {{MR|0277582}} {{ZBL|0216.07401}} </TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> S. Sternberg, "Lectures on differential geometry" , Prentice-Hall (1964) {{MR|0193578}} {{ZBL|0129.13102}} </TD></TR><TR><TD valign="top">[2a]</TD> <TD valign="top"> E. Cartan, "Sur la structure des groupes infinis de transformations" , ''Oeuvres complètes'' , '''2''' , Gauthier-Villars (1953) pp. 571–624 {{MR|1509054}} {{MR|1509040}} {{ZBL|36.0223.03}} {{ZBL|35.0176.04}} </TD></TR><TR><TD valign="top">[2b]</TD> <TD valign="top"> E. Cartan, "Sur la structure des groupes infinis de transformations" , ''Oeuvres complètes'' , '''2''' , Gauthier-Villars (1953) pp. 625–714 {{MR|1509054}} {{MR|1509040}} {{ZBL|36.0223.03}} {{ZBL|35.0176.04}} </TD></TR><TR><TD valign="top">[2c]</TD> <TD valign="top"> E. Cartan, "Les groupes de transformations continus, infinis, simples" , ''Oeuvres complètes'' , '''2''' , Gauthier-Villars (1953) pp. 857–925 {{MR|1509105}} {{ZBL|40.0193.02}} {{ZBL|38.0194.01}} </TD></TR><TR><TD valign="top">[2d]</TD> <TD valign="top"> E. Cartan, "Les groupes de transformations continus, infinis, simples" , ''Oeuvres complètes'' , '''2''' , Gauthier-Villars (1953) pp. 1335–1384 {{MR|1509105}} {{ZBL|40.0193.02}} {{ZBL|38.0194.01}} </TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> V. Guillemin, "Infinite dimensional primitive Lie algebras" ''J. Diff. Geom.'' , '''4''' : 3 (1970) pp. 257–282 {{MR|0268233}} {{ZBL|0223.17007}} </TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> S. Kobayashi, "Transformation groups in differential geometry" , Springer (1972) {{MR|0355886}} {{ZBL|0246.53031}} </TD></TR><TR><TD valign="top">[5a]</TD> <TD valign="top"> S. Kobayashi, T. Nagano, "On filtered Lie algebras and geometric structures I" ''J. Math. Mech.'' , '''13''' : 5 (1964) pp. 875–907 {{MR|0168704}} {{ZBL|0142.19504}} </TD></TR><TR><TD valign="top">[5b]</TD> <TD valign="top"> S. Kobayashi, T. Nagano, "On filtered Lie algebras and geometric structures III" ''J. Math. Mech.'' , '''14''' : 5 (1965) pp. 679–706 {{MR|0188364}} {{ZBL|}} </TD></TR><TR><TD valign="top">[6a]</TD> <TD valign="top"> M. Kuranishi, "On the local theory of continuous infinite pseudo groups I" ''Nagoya Math. J.'' , '''15''' (1959) pp. 225–260 {{MR|0116071}} {{ZBL|0212.56501}} </TD></TR><TR><TD valign="top">[6b]</TD> <TD valign="top"> M. Kuranishi, "On the local theory of continuous infinite pseudo groups II" ''Nagoya Math. J.'' , '''19''' (1961) pp. 55–91 {{MR|0142694}} {{ZBL|0212.56501}} </TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> P. Libermann, "Pseudogroupes infinitésimaux attachées aux pseudogroupes de Lie" ''Bull. Soc. Math. France'' , '''87''' : 4 (1959) pp. 409–425 {{MR|123279}} {{ZBL|}} </TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> S. Shnider, "The classification of real primitive infinite Lie algebras" ''J. Diff. Geom.'' , '''4''' : 1 (1970) pp. 81–89 {{MR|0285574}} {{ZBL|0244.17014}} </TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top"> I.M. Singer, S. Sternberg, "The infinite groups of Lie and Cartan. I. The transitive groups" ''J. d'Anal. Math.'' , '''15''' (1965) pp. 1–114 {{MR|0217822}} {{ZBL|0277.58008}} </TD></TR><TR><TD valign="top">[10]</TD> <TD valign="top"> R.L. Wilson, "Irreducible Lie algebras of infinite type" ''Proc. Amer. Math. Soc.'' , '''29''' : 2 (1971) pp. 243–249 {{MR|0277582}} {{ZBL|0216.07401}} </TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> C. Albert, P. Molino, "Pseudogroupes de Lie transitifs" , '''I–II''' , Hermann (1984–1987) {{MR|0904048}} {{MR|0770061}} {{ZBL|0682.53003}} {{ZBL|0563.53027}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J.F. Pommaret, "Systems of partial differential equations and Lie pseudogroups" , Gordon & Breach (1978) {{MR|0517402}} {{ZBL|0418.35028}} {{ZBL|0401.58006}} </TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> C. Albert, P. Molino, "Pseudogroupes de Lie transitifs" , '''I–II''' , Hermann (1984–1987) {{MR|0904048}} {{MR|0770061}} {{ZBL|0682.53003}} {{ZBL|0563.53027}} </TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> J.F. Pommaret, "Systems of partial differential equations and Lie pseudogroups" , Gordon & Breach (1978) {{MR|0517402}} {{ZBL|0418.35028}} {{ZBL|0401.58006}} </TD></TR></table> |
Revision as of 08:08, 6 June 2020
of transformations of a differentiable manifold $ M $
A family of diffeomorphisms from open subsets of $ M $ into $ M $ that is closed under composition of mappings, transition to the inverse mapping, as well as under restriction and glueing of mappings. More precisely, a pseudo-group of transformations $ \Gamma $ of a manifold $ M $ consists of local transformations, i.e. pairs of the form $ p =( D _ {p} , \overline{p}\; ) $ where $ D _ {p} $ is an open subset of $ M $ and $ \overline{p}\; $ is a diffeomorphism $ D _ {p} \rightarrow M $, where it is moreover assumed that 1) $ p , q \in \Gamma $ implies $ p \circ q = ( \overline{q}\; {} ^ {-} 1 ( D _ {p} \cap \overline{q}\; ( D _ {q} ) ) , \overline{p}\; \circ \overline{q}\; ) \in \Gamma $; 2) $ p \in \Gamma $ implies $ p ^ {-} 1 = ( \overline{p}\; ( D _ {p} ) , \overline{p}\; {} ^ {-} 1 ) \in \Gamma $; 3) $ ( M , \mathop{\rm id} ) \in \Gamma $; and 4) if $ \overline{p}\; $ is a diffeomorphism from an open subset $ D \subset M $ into $ M $ and $ D = \cup _ \alpha D _ \alpha $, where $ D _ \alpha $ are open sets in $ M $, then $ ( D , \overline{p}\; ) \in \Gamma \iff ( D _ \alpha , \overline{p}\; \mid _ {D _ \alpha } ) \in \Gamma $ for any $ \alpha $. With necessary changes in 1)–4) one can also define pseudo-groups of transformations of an arbitrary topological space (cf. [7]) or even of an arbitrary set. As a group of transformations, a pseudo-group of transformations determines an equivalence relation on $ M $; the equivalence classes are called its orbits. A pseudo-group $ \Gamma $ of transformations of a manifold $ M $ is called transitive if $ M $ is its only orbit, and is called primitive if $ M $ does not admit non-trivial $ \Gamma $- invariant foliations (otherwise the pseudo-group is called imprimitive).
A pseudo-group $ \Gamma $ of transformations of a differentiable manifold is called a Lie pseudo-group of transformations defined by a system $ S $ of partial differential equations if $ \Gamma $ consists of exactly those local transformations of $ M $ that satisfy the system $ S $. E.g., the pseudo-group of conformal transformations of the plane is a Lie pseudo-group of transformations, determined by the Cauchy–Riemann equations (cf. Cauchy-Riemann equations). The order of a Lie pseudo-group of transformations is the minimum order of its defining system of differential equations.
Examples of Lie pseudo-groups of transformations. a) The pseudo-group of all holomorphic local transformations of $ n $- dimensional complex space $ \mathbf C ^ {n} $.
b) The pseudo-group of all holomorphic local transformations of $ \mathbf C ^ {n} $ with constant Jacobian.
c) The pseudo-group of all holomorphic local transformations of $ \mathbf C ^ {n} $ with Jacobian 1.
d) The Hamilton pseudo-group of all holomorphic local transformations of $ \mathbf C ^ {n} $( $ n $ even) preserving the differential $ 2 $- form
$$ \omega = d z ^ {1} \wedge d z ^ {2} + d z ^ {3} \wedge d z ^ {4} + \dots + d z ^ {n-} 1 \wedge d z ^ {n} . $$
e) The pseudo-group of all holomorphic local transformations of $ \mathbf C ^ {n} $ preserving $ \omega $ up to constant factor.
f) The contact pseudo-group of all holomorphic local transformations of $ \mathbf C ^ {n} $( $ n = 2 m + 1 $, $ m \geq 1 $) preserving the differential $ 1 $- form
$$ d z ^ {n} + \sum _ { i= } 1 ^ { m } ( z ^ {i} d z ^ {m+} i - z ^ {m+} i d z ^ {i} ) $$
up to a factor (which can be a function).
g) The real analogues of the complex pseudo-groups of transformations of Examples a)–f).
The order of the Lie pseudo-groups of Examples a), c)–f) is 1, while in b) the order is 2.
Any Lie group $ G $ of transformations of a manifold $ M $ determines a pseudo-group $ \Gamma ( G) $ of transformations, consisting of the restrictions of the transformations from $ G $ onto open subsets of $ M $. A pseudo-group of transformations of the form $ \Gamma ( G) $ is called globalizable. E.g., a pseudo-group of local conformal transformations of the sphere $ S ^ {n} $ is globalizable for $ n > 2 $ and not globalizable for $ n = 2 $.
A Lie pseudo-group of transformations is said to be of finite type if there is a natural number $ d $ such that every local transformation $ p \in \Gamma $ is uniquely determined by its $ d $- jet at some point $ x \in D _ {p} $; the smallest such $ d $ is called the degree, or type, of $ \Gamma $; if such a $ d $ does not exist, then $ \Gamma $ is called a pseudo-group of transformations of infinite type. The pseudo-groups of Examples a)–f) are primitive Lie pseudo-groups of transformations of infinite type.
Let $ \Gamma $ be a transitive Lie pseudo-group of transformations of an $ n $- dimensional manifold $ M $ and let $ G ^ {r} ( \Gamma ) $ be the family of all $ r $- jets of the local transformations in $ \Gamma $ that preserve a point $ O \in M $, i.e. those $ p \in \Gamma $ for which $ O \in D _ {p} $ and $ \overline{p}\; ( O) = O $. The set $ G ^ {r} ( \Gamma ) $, endowed with the natural structure of a Lie group, is called the $ r $- th order isotropy group of $ \Gamma $( $ G ^ {1} ( \Gamma ) $ is also called the linear isotropy group of $ \Gamma $). The Lie algebra $ \mathfrak g ^ {r} ( \Gamma ) $ of $ \Gamma ^ {r} ( \Gamma ) $ can be naturally imbedded in the Lie algebra of $ r $- jets of vector fields on $ M $ at $ O $. If $ \Gamma $ is a Lie pseudo-group of transformations of order one, then the kernel $ G ^ {(} r) ( \Gamma ) $ of the natural homomorphism $ G ^ {r+} 1 ( \Gamma ) \rightarrow G ^ {r} ( \Gamma ) $ depends, for any $ r \geq 1 $, only on the linear isotropy group $ G ^ {1} ( \Gamma ) $, and is called its $ r $- th extension. A Lie pseudo-group of transformations $ \Gamma $ of order one is of finite type $ d $ if and only if
$$ \mathop{\rm dim} G ^ {(} d- 1) ( \Gamma ) \neq 0 \ \ \textrm{ and } \ \ \mathop{\rm dim} G ^ {(} d) ( \Gamma ) = 0 . $$
If, moreover, $ G ^ {1} ( \Gamma ) $ is irreducible, then $ d \leq 2 $( cf. ). A Lie pseudo-group of transformations $ \Gamma $ of order one is a pseudo-group of transformations of finite type only if, and in the complex case if and only if, the Lie algebra $ \mathfrak g ^ {1} $ does not contain endomorphisms of rank 1 (cf. [10]). Such linear Lie algebras are called elliptic.
One has calculated the Lie algebras of all extensions $ G ^ {(} r) ( \Gamma ) $, $ r \geq 1 $, where $ \Gamma $ is a Lie pseudo-group of transformations of order one, in terms of the linear isotropy algebra. More precisely, the Lie algebra $ \mathfrak g ^ {(} r) ( \Gamma ) $ of $ G ^ {(} r) ( \Gamma ) $ consists of the $ ( r+ 1) $- jets of vector fields on $ M $ at $ O $ having, in some local coordinate system $ ( x ^ {1} \dots x ^ {n} ) $, the form
$$ \sum v _ {i _ {0} \dots i _ {r} } ^ {i} x ^ {i _ {0} } \dots x ^ {i _ {r} } \frac \partial {\partial x ^ {i} } , $$
where $ v _ {i _ {0} \dots i _ {r} } ^ {i} $ is an arbitrary tensor that is symmetric with respect to the lower indices and that satisfies the condition: For any fixed $ i _ {1} \dots i _ {r} $ the matrix
$$ \| v _ {j , i _ {1} \dots i _ {r} } ^ {i} \| _ {i , j = 1 } ^ {n} $$
belongs to $ \mathfrak g ^ {1} ( \Gamma ) $, relative to some coordinate system $ ( x ^ {i} ) $.
Let $ M $ be an $ n $- dimensional differentiable manifold over the field $ K = \mathbf R $ or $ \mathbf C $. Every transitive Lie pseudo-group of transformations $ \Gamma $ of order $ k $ on a manifold $ M $ coincides with the pseudo-group of all local automorphism of some $ G ^ {k} ( \Gamma ) $- structure (cf. $ G $- structure) of order $ k $ on $ M $( Cartan's first fundamental theorem). The first classification of all primitive Lie pseudo-groups of infinite type was obtained by E. Cartan . According to his theorem, every primitive Lie pseudo-group of transformations of infinite type, consisting of holomorphic local transformations, is locally isomorphic to one of the pseudo-groups of Examples a)–f). This theorem has been repeatedly proved; its modern proofs lead to the study of certain filtered Lie algebras (cf. [9]). The classification of these filtered Lie algebras can be given on the basis of the classification of simple graded Lie algebras (cf. [3]). The classification of primitive pseudo-groups of transformations has also been obtained in the real case, and the condition of analyticity of the action of the pseudo-group of transformations has been replaced by the weaker condition of infinite differentiability (cf. [8], [9]). One has constructed certain abstract models of transitive Lie pseudo-groups, which came to play the same role in the theory of pseudo-groups of transformations of infinite type as do abstract Lie groups in the finite-dimensional case (cf. , [9]).
References
[1] | S. Sternberg, "Lectures on differential geometry" , Prentice-Hall (1964) MR0193578 Zbl 0129.13102 |
[2a] | E. Cartan, "Sur la structure des groupes infinis de transformations" , Oeuvres complètes , 2 , Gauthier-Villars (1953) pp. 571–624 MR1509054 MR1509040 Zbl 36.0223.03 Zbl 35.0176.04 |
[2b] | E. Cartan, "Sur la structure des groupes infinis de transformations" , Oeuvres complètes , 2 , Gauthier-Villars (1953) pp. 625–714 MR1509054 MR1509040 Zbl 36.0223.03 Zbl 35.0176.04 |
[2c] | E. Cartan, "Les groupes de transformations continus, infinis, simples" , Oeuvres complètes , 2 , Gauthier-Villars (1953) pp. 857–925 MR1509105 Zbl 40.0193.02 Zbl 38.0194.01 |
[2d] | E. Cartan, "Les groupes de transformations continus, infinis, simples" , Oeuvres complètes , 2 , Gauthier-Villars (1953) pp. 1335–1384 MR1509105 Zbl 40.0193.02 Zbl 38.0194.01 |
[3] | V. Guillemin, "Infinite dimensional primitive Lie algebras" J. Diff. Geom. , 4 : 3 (1970) pp. 257–282 MR0268233 Zbl 0223.17007 |
[4] | S. Kobayashi, "Transformation groups in differential geometry" , Springer (1972) MR0355886 Zbl 0246.53031 |
[5a] | S. Kobayashi, T. Nagano, "On filtered Lie algebras and geometric structures I" J. Math. Mech. , 13 : 5 (1964) pp. 875–907 MR0168704 Zbl 0142.19504 |
[5b] | S. Kobayashi, T. Nagano, "On filtered Lie algebras and geometric structures III" J. Math. Mech. , 14 : 5 (1965) pp. 679–706 MR0188364 |
[6a] | M. Kuranishi, "On the local theory of continuous infinite pseudo groups I" Nagoya Math. J. , 15 (1959) pp. 225–260 MR0116071 Zbl 0212.56501 |
[6b] | M. Kuranishi, "On the local theory of continuous infinite pseudo groups II" Nagoya Math. J. , 19 (1961) pp. 55–91 MR0142694 Zbl 0212.56501 |
[7] | P. Libermann, "Pseudogroupes infinitésimaux attachées aux pseudogroupes de Lie" Bull. Soc. Math. France , 87 : 4 (1959) pp. 409–425 MR123279 |
[8] | S. Shnider, "The classification of real primitive infinite Lie algebras" J. Diff. Geom. , 4 : 1 (1970) pp. 81–89 MR0285574 Zbl 0244.17014 |
[9] | I.M. Singer, S. Sternberg, "The infinite groups of Lie and Cartan. I. The transitive groups" J. d'Anal. Math. , 15 (1965) pp. 1–114 MR0217822 Zbl 0277.58008 |
[10] | R.L. Wilson, "Irreducible Lie algebras of infinite type" Proc. Amer. Math. Soc. , 29 : 2 (1971) pp. 243–249 MR0277582 Zbl 0216.07401 |
Comments
References
[a1] | C. Albert, P. Molino, "Pseudogroupes de Lie transitifs" , I–II , Hermann (1984–1987) MR0904048 MR0770061 Zbl 0682.53003 Zbl 0563.53027 |
[a2] | J.F. Pommaret, "Systems of partial differential equations and Lie pseudogroups" , Gordon & Breach (1978) MR0517402 Zbl 0418.35028 Zbl 0401.58006 |
Pseudo-group. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Pseudo-group&oldid=33892