Namespaces
Variants
Actions

Difference between revisions of "Prüfer domain"

From Encyclopedia of Mathematics
Jump to: navigation, search
m (moved Prüfer domain to Pruefer domain: ascii title)
m (tex encoded by computer)
 
(One intermediate revision by the same user not shown)
Line 1: Line 1:
A commutative semi-hereditary [[Integral domain|integral domain]] (cf. also [[Semi-hereditary ring|Semi-hereditary ring]]; [[Injective module|Injective module]]). The Prüfer domains are the commutative integral domains <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110260/p1102601.png" /> that satisfy the following two conditions:
+
<!--
 +
p1102601.png
 +
$#A+1 = 6 n = 2
 +
$#C+1 = 6 : ~/encyclopedia/old_files/data/P110/P.1100260 Pr\AGufer domain
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
i) the localization <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110260/p1102602.png" /> (cf. also [[Localization in a commutative algebra|Localization in a commutative algebra]]) is a valuation ring (see [[Valuation|Valuation]]) for every maximal ideal <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110260/p1102603.png" /> of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110260/p1102604.png" />;
+
{{TEX|auto}}
 +
{{TEX|done}}
  
ii) an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110260/p1102605.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p110/p110260/p1102606.png" /> is flat (cf. [[Flat module|Flat module]]) if and only if it is torsion-free (cf. also [[Group without torsion|Group without torsion]]).
+
A commutative semi-hereditary [[Integral domain|integral domain]] (cf. also [[Semi-hereditary ring|Semi-hereditary ring]]; [[Injective module|Injective module]]). The Prüfer domains are the commutative integral domains  $  A $
 +
that satisfy the following two conditions:
 +
 
 +
i) the localization  $  A _  {\mathcal M}  $(
 +
cf. also [[Localization in a commutative algebra|Localization in a commutative algebra]]) is a valuation ring (see [[Valuation|Valuation]]) for every maximal ideal  $  {\mathcal M} $
 +
of  $  A $;
 +
 
 +
ii) an $  A $-
 +
module $  M $
 +
is flat (cf. [[Flat module|Flat module]]) if and only if it is torsion-free (cf. also [[Group without torsion|Group without torsion]]).
  
 
A Noetherian Prüfer domain is a Dedekind domain (see [[Dedekind ring|Dedekind ring]]). Each Bezout domain (also called [[Bezout ring|Bezout ring]]) is a Prüfer domain.
 
A Noetherian Prüfer domain is a Dedekind domain (see [[Dedekind ring|Dedekind ring]]). Each Bezout domain (also called [[Bezout ring|Bezout ring]]) is a Prüfer domain.

Latest revision as of 08:08, 6 June 2020


A commutative semi-hereditary integral domain (cf. also Semi-hereditary ring; Injective module). The Prüfer domains are the commutative integral domains $ A $ that satisfy the following two conditions:

i) the localization $ A _ {\mathcal M} $( cf. also Localization in a commutative algebra) is a valuation ring (see Valuation) for every maximal ideal $ {\mathcal M} $ of $ A $;

ii) an $ A $- module $ M $ is flat (cf. Flat module) if and only if it is torsion-free (cf. also Group without torsion).

A Noetherian Prüfer domain is a Dedekind domain (see Dedekind ring). Each Bezout domain (also called Bezout ring) is a Prüfer domain.

There are Prüfer domains that are not Bezout and there are Prüfer domains having finitely generated ideals requiring more than two generators [a2] (hence, these are not Dedekind rings).

References

[a1] R. Gilmer, "Multiplicative ideal theory" , M. Dekker (1972)
[a2] R. Heidman, L. Levy, " and -generator ideals in Prüfer domains" Rocky Mount. Math. J. , 5 (1975) pp. 361–373
[a3] H.C. Hutchins, "Examples of commutative rings" , Polygonal (1981)
How to Cite This Entry:
Prüfer domain. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Pr%C3%BCfer_domain&oldid=22955
This article was adapted from an original article by M. Hazewinkel (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article