Namespaces
Variants
Actions

Difference between revisions of "Polar coordinates"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
The numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073410/p0734101.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073410/p0734102.png" /> (see ) related to rectangular Cartesian coordinates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073410/p0734103.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073410/p0734104.png" /> by the formulas:
+
<!--
 +
p0734101.png
 +
$#A+1 = 40 n = 0
 +
$#C+1 = 40 : ~/encyclopedia/old_files/data/P073/P.0703410 Polar coordinates
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073410/p0734105.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073410/p0734106.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073410/p0734107.png" />. The coordinate lines are: concentric circles ( <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073410/p0734108.png" />) and rays (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073410/p0734109.png" />).
+
The numbers  $  \rho $
 +
and  $  \phi $(
 +
see ) related to rectangular Cartesian coordinates  $  x $
 +
and  $  y $
 +
by the formulas:
 +
 
 +
$$
 +
= \rho  \cos  \phi ,\ \
 +
= \rho  \sin  \phi ,
 +
$$
 +
 
 +
where  $  0 \leq  \rho < \infty $,  
 +
$  0 \leq  \phi < 2 \pi $.  
 +
The coordinate lines are: concentric circles ( $  \rho = \textrm{ const } $)  
 +
and rays ( $  \phi = \textrm{ const } $).
  
 
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/p073410a.gif" />
 
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/p073410a.gif" />
Line 9: Line 31:
 
Figure: p073410a
 
Figure: p073410a
  
The system of polar coordinates is an [[Orthogonal system|orthogonal system]]. To each point in the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073410/p07341010.png" />-plane (except the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073410/p07341011.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073410/p07341012.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073410/p07341013.png" /> is undefined, i.e. can be any number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073410/p07341014.png" />) corresponds a pair of numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073410/p07341015.png" /> and vice versa. The distance <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073410/p07341016.png" /> between a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073410/p07341017.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073410/p07341018.png" /> (the pole) is called the polar radius, and the angle <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073410/p07341019.png" /> is called the polar angle. The [[Lamé coefficients|Lamé coefficients]] (scale factors) are:
+
The system of polar coordinates is an [[Orthogonal system|orthogonal system]]. To each point in the $  Oxy $-
 +
plane (except the point $  O $
 +
for which $  \rho = 0 $
 +
and $  \phi $
 +
is undefined, i.e. can be any number $  0 \leq  \phi < 2 \pi $)  
 +
corresponds a pair of numbers $  ( \rho , \phi ) $
 +
and vice versa. The distance $  \rho $
 +
between a point $  P $
 +
and  $  ( 0 , 0 ) $(
 +
the pole) is called the polar radius, and the angle $  \phi $
 +
is called the polar angle. The [[Lamé coefficients|Lamé coefficients]] (scale factors) are:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073410/p07341020.png" /></td> </tr></table>
+
$$
 +
L _  \rho  = 1 ,\  L _  \phi  = \rho .
 +
$$
  
 
The surface element is:
 
The surface element is:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073410/p07341021.png" /></td> </tr></table>
+
$$
 +
d \sigma  = \rho  d \rho  d \phi .
 +
$$
  
 
The fundamental operations of vector analysis are:
 
The fundamental operations of vector analysis are:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073410/p07341022.png" /></td> </tr></table>
+
$$
 +
\mathop{\rm grad} _  \rho  f  =
 +
\frac{\partial  f }{\partial  \rho }
 +
,\ \
 +
\mathop{\rm grad} _  \phi  f  =
 +
\frac{1} \rho
 +
 +
\frac{\partial  f }{\partial  \phi }
 +
;
 +
$$
 +
 
 +
$$
 +
\mathop{\rm div}  \mathbf a  =
 +
\frac{1} \rho
 +
a _  \rho  +
 +
\frac{\partial  a _  \rho  }{\partial  \rho }
 +
+
 +
\frac{1} \rho
 +
 +
\frac{\partial  a _  \phi  }{\partial
 +
\phi }
 +
,\  \mathbf a  = ( a _  \rho  , a _  \phi  ) ;
 +
$$
 +
 
 +
$$
 +
\Delta f  =
 +
\frac{1} \rho
 +
 +
\frac \partial {\partial  \rho }
 +
\left (
 +
\rho
 +
\frac{\partial  f }{\partial  \rho }
 +
\right ) +
 +
\frac{1}{\rho  ^ {2} }
 +
 +
\frac{
 +
\partial  ^ {2} f }{\partial  \phi  ^ {2} }
 +
  =
 +
\frac{\partial
 +
^ {2} f }{\partial  \rho  ^ {2} }
 +
+
 +
\frac{1} \rho
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073410/p07341023.png" /></td> </tr></table>
+
\frac{\partial  f }{\partial  \rho }
 +
+
 +
\frac{1}{\rho  ^ {2} }
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073410/p07341024.png" /></td> </tr></table>
+
\frac{\partial  ^ {2} f }{\partial  \phi  ^ {2} }
 +
.
 +
$$
  
The numbers <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073410/p07341025.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073410/p07341026.png" /> related to Cartesian rectangular coordinates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073410/p07341027.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073410/p07341028.png" /> by the formulas:
+
The numbers $  r $
 +
and $  \psi $
 +
related to Cartesian rectangular coordinates $  x $
 +
and $  y $
 +
by the formulas:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073410/p07341029.png" /></td> </tr></table>
+
$$
 +
= a r  \cos  \psi ,\ \
 +
= b r  \sin  \psi ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073410/p07341030.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073410/p07341031.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073410/p07341032.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073410/p07341033.png" />, are called generalized polar coordinates. The coordinate lines are: ellipses (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073410/p07341034.png" />) and rays (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073410/p07341035.png" />).
+
where $  0 \leq  r < \infty $,
 +
0 \leq  \psi < 2 \pi $,
 +
$  a, b > 0 $,  
 +
$  a \neq b $,  
 +
are called generalized polar coordinates. The coordinate lines are: ellipses ( $  r = \textrm{ const } $)  
 +
and rays ( $  \psi = \textrm{ const } $).
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  G.A. Korn,  T.M. Korn,  "Mathematical handbook for scientists and engineers" , McGraw-Hill  (1961)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  G.A. Korn,  T.M. Korn,  "Mathematical handbook for scientists and engineers" , McGraw-Hill  (1961)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
The generalization of polar coordinates to 3 dimensions are the [[Spherical coordinates|spherical coordinates]].
 
The generalization of polar coordinates to 3 dimensions are the [[Spherical coordinates|spherical coordinates]].
  
By viewing a point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073410/p07341036.png" /> as a complex number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073410/p07341037.png" />, the polar coordinates <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073410/p07341038.png" /> correspond to the representation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073410/p07341039.png" /> as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p073/p073410/p07341040.png" />.
+
By viewing a point $  ( x, y) $
 +
as a complex number $  z = x+ iy $,  
 +
the polar coordinates $  ( \rho , \phi ) $
 +
correspond to the representation of $  z $
 +
as $  z = \rho  e ^ {i \phi } $.
  
 
See also [[Complex number|Complex number]].
 
See also [[Complex number|Complex number]].

Revision as of 08:06, 6 June 2020


The numbers $ \rho $ and $ \phi $( see ) related to rectangular Cartesian coordinates $ x $ and $ y $ by the formulas:

$$ x = \rho \cos \phi ,\ \ y = \rho \sin \phi , $$

where $ 0 \leq \rho < \infty $, $ 0 \leq \phi < 2 \pi $. The coordinate lines are: concentric circles ( $ \rho = \textrm{ const } $) and rays ( $ \phi = \textrm{ const } $).

Figure: p073410a

The system of polar coordinates is an orthogonal system. To each point in the $ Oxy $- plane (except the point $ O $ for which $ \rho = 0 $ and $ \phi $ is undefined, i.e. can be any number $ 0 \leq \phi < 2 \pi $) corresponds a pair of numbers $ ( \rho , \phi ) $ and vice versa. The distance $ \rho $ between a point $ P $ and $ ( 0 , 0 ) $( the pole) is called the polar radius, and the angle $ \phi $ is called the polar angle. The Lamé coefficients (scale factors) are:

$$ L _ \rho = 1 ,\ L _ \phi = \rho . $$

The surface element is:

$$ d \sigma = \rho d \rho d \phi . $$

The fundamental operations of vector analysis are:

$$ \mathop{\rm grad} _ \rho f = \frac{\partial f }{\partial \rho } ,\ \ \mathop{\rm grad} _ \phi f = \frac{1} \rho \frac{\partial f }{\partial \phi } ; $$

$$ \mathop{\rm div} \mathbf a = \frac{1} \rho a _ \rho + \frac{\partial a _ \rho }{\partial \rho } + \frac{1} \rho \frac{\partial a _ \phi }{\partial \phi } ,\ \mathbf a = ( a _ \rho , a _ \phi ) ; $$

$$ \Delta f = \frac{1} \rho \frac \partial {\partial \rho } \left ( \rho \frac{\partial f }{\partial \rho } \right ) + \frac{1}{\rho ^ {2} } \frac{ \partial ^ {2} f }{\partial \phi ^ {2} } = \frac{\partial ^ {2} f }{\partial \rho ^ {2} } + \frac{1} \rho \frac{\partial f }{\partial \rho } + \frac{1}{\rho ^ {2} } \frac{\partial ^ {2} f }{\partial \phi ^ {2} } . $$

The numbers $ r $ and $ \psi $ related to Cartesian rectangular coordinates $ x $ and $ y $ by the formulas:

$$ x = a r \cos \psi ,\ \ y = b r \sin \psi , $$

where $ 0 \leq r < \infty $, $ 0 \leq \psi < 2 \pi $, $ a, b > 0 $, $ a \neq b $, are called generalized polar coordinates. The coordinate lines are: ellipses ( $ r = \textrm{ const } $) and rays ( $ \psi = \textrm{ const } $).

References

[1] G.A. Korn, T.M. Korn, "Mathematical handbook for scientists and engineers" , McGraw-Hill (1961)

Comments

The generalization of polar coordinates to 3 dimensions are the spherical coordinates.

By viewing a point $ ( x, y) $ as a complex number $ z = x+ iy $, the polar coordinates $ ( \rho , \phi ) $ correspond to the representation of $ z $ as $ z = \rho e ^ {i \phi } $.

See also Complex number.

References

[a1] H. Triebel, "Analysis and mathematical physics" , Reidel (1986) pp. 103
[a2] K. Rektorys (ed.) , Applicable mathematics , Iliffe (1969) pp. 216
How to Cite This Entry:
Polar coordinates. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Polar_coordinates&oldid=17546
This article was adapted from an original article by D.D. Sokolov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article