Namespaces
Variants
Actions

Difference between revisions of "Periodic function"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
p0721701.png
 +
$#A+1 = 61 n = 0
 +
$#C+1 = 61 : ~/encyclopedia/old_files/data/P072/P.0702170 Periodic function
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
A function having a period (cf. [[Period of a function|Period of a function]]).
 
A function having a period (cf. [[Period of a function|Period of a function]]).
  
Let a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072170/p0721701.png" /> be defined on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072170/p0721702.png" /> and have period <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072170/p0721703.png" />. To obtain the graph of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072170/p0721704.png" /> it is sufficient to have the graph of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072170/p0721705.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072170/p0721706.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072170/p0721707.png" /> is a certain number, and shift it along <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072170/p0721708.png" /> over <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072170/p0721709.png" />. If a periodic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072170/p07217010.png" /> with period <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072170/p07217011.png" /> has a finite derivative <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072170/p07217012.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072170/p07217013.png" /> is a periodic function with the same period. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072170/p07217014.png" /> be integrable over any segment and have period <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072170/p07217015.png" />. The indefinite integral <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072170/p07217016.png" /> has period <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072170/p07217017.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072170/p07217018.png" />, otherwise it is non-periodic, such as for example for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072170/p07217019.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072170/p07217020.png" />.
+
Let a function
 +
be defined on   X \subset  \mathbf R
 +
and have period   T .  
 +
To obtain the graph of   f
 +
it is sufficient to have the graph of   f
 +
on   [ a, a+ T] \cap X ,  
 +
where   a
 +
is a certain number, and shift it along   \mathbf R
 +
over   \pm  T, \pm  2T ,\dots .  
 +
If a periodic function   f
 +
with period   T
 +
has a finite derivative   f ^ { \prime } ,  
 +
then   f ^ { \prime }
 +
is a periodic function with the same period. Let   f
 +
be integrable over any segment and have period   T .  
 +
The indefinite integral $  F( x)= \int _ {0}  ^ {x} f( t)  dt $
 +
has period   T
 +
if  $  \int _ {0}  ^ {T} f( t)  dt = 0 $,  
 +
otherwise it is non-periodic, such as for example for $  f( x) = \cos  x+ 1 $,  
 +
where $  F( x) = \sin  x + x $.
  
 
''A.A. Konyushkov''
 
''A.A. Konyushkov''
  
A periodic function of a complex variable <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072170/p07217021.png" /> is a single-valued analytic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072170/p07217022.png" /> having only isolated singular points (cf. [[Singular point|Singular point]]) in the complex <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072170/p07217023.png" />-plane <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072170/p07217024.png" /> and for which there exists a complex number <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072170/p07217025.png" />, called a period of the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072170/p07217026.png" />, such that
+
A periodic function of a complex variable   z
 +
is a single-valued analytic function   f( z)
 +
having only isolated singular points (cf. [[Singular point|Singular point]]) in the complex   z -
 +
plane   \mathbf C
 +
and for which there exists a complex number $  p \neq 0 $,  
 +
called a period of the function   f( z) ,  
 +
such that
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072170/p07217027.png" /></td> </tr></table>
+
$$
 +
f( z+ p)  = f( z),\ \
 +
z \in \mathbf C .
 +
$$
  
Any linear combination of the periods of a given periodic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072170/p07217028.png" /> with integer coefficients is also a period of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072170/p07217029.png" />. The set of all periods of a given periodic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072170/p07217030.png" /> constitutes a discrete Abelian group under addition, called the period group of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072170/p07217031.png" />. If the basis of this group consists of one unique basic, or primitive, period <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072170/p07217032.png" />, i.e. if any period <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072170/p07217033.png" /> is an integer multiple of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072170/p07217034.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072170/p07217035.png" /> is called a [[Simply-periodic function|simply-periodic function]]. In the case of a basis consisting of two basic periods <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072170/p07217036.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072170/p07217037.png" />, one has a [[Double-periodic function|double-periodic function]]. If the periodic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072170/p07217038.png" /> is not a constant, then a basis of its period group cannot consist of more than two basic independent periods (Jacobi's theorem).
+
Any linear combination of the periods of a given periodic function   f( z)
 +
with integer coefficients is also a period of   f( z) .  
 +
The set of all periods of a given periodic function   f( z) \neq \textrm{ const }
 +
constitutes a discrete Abelian group under addition, called the period group of   f( z) .  
 +
If the basis of this group consists of one unique basic, or primitive, period $  2 \omega = 2 \omega _ {1} \neq 0 $,  
 +
i.e. if any period p $
 +
is an integer multiple of   2 \omega ,  
 +
then   f( z)
 +
is called a [[Simply-periodic function|simply-periodic function]]. In the case of a basis consisting of two basic periods   2 \omega _ {1} , 2 \omega _ {3} ,
 +
$  \mathop{\rm Im} ( \omega _ {1} / \omega _ {3} ) \neq 0 $,  
 +
one has a [[Double-periodic function|double-periodic function]]. If the periodic function   f( z)
 +
is not a constant, then a basis of its period group cannot consist of more than two basic independent periods (Jacobi's theorem).
  
 
Any strip of the form
 
Any strip of the form
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072170/p07217039.png" /></td> </tr></table>
+
$$
 +
\{ {z = ( \tau e ^ {i \alpha } + t) 2 \omega } : {- \infty < \tau < \infty , 0 \leq  t < 1 ,\
 +
0 < \alpha \leq  \pi /2 } \}
 +
,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072170/p07217040.png" /> is one of the basic periods of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072170/p07217041.png" /> or is congruent to it, is called a period strip of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072170/p07217042.png" />; one usually takes <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072170/p07217043.png" />, i.e. one considers a period strip with sides perpendicular to the basic period <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072170/p07217044.png" />. In each period strip, a periodic function takes any of its values and moreover equally often.
+
where   2 \omega
 +
is one of the basic periods of   f( z)
 +
or is congruent to it, is called a period strip of   f( z) ;  
 +
one usually takes $  \alpha = \pi /2 $,  
 +
i.e. one considers a period strip with sides perpendicular to the basic period   2 \omega .  
 +
In each period strip, a periodic function takes any of its values and moreover equally often.
  
Any entire periodic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072170/p07217045.png" /> can be expanded into a Fourier series throughout <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072170/p07217046.png" />:
+
Any entire periodic function   f( z)
 +
can be expanded into a Fourier series throughout   \mathbf C :
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072170/p07217047.png" /></td> <td valign="top" style="width:5%;text-align:right;">(*)</td></tr></table>
+
$$ \tag{* }
 +
f( z)  = \sum _ {k=- \infty } ^  \infty  a _ {k} e ^ {\pi ikz/ \omega } ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072170/p07217048.png" /></td> </tr></table>
+
$$
 +
a _ {k}  =
 +
\frac{1}{2 \omega }
 +
\int\limits _ {- \infty } ^  \infty  f( t) e ^ {- \pi ikt/ \omega }  dt,
 +
$$
  
which converges uniformly and absolutely on the straight line <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072170/p07217049.png" /> and, in general, on any arbitrarily wide strip of finite width parallel to that line. The case when an entire periodic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072170/p07217050.png" /> tends to a certain finite or infinite limit at each of the two ends of the period strip is characterized by the fact that the series (*) contains only a finite number of terms, i.e. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072170/p07217051.png" /> should be a [[Trigonometric polynomial|trigonometric polynomial]].
+
which converges uniformly and absolutely on the straight line $  \{ {z = t \omega } : {- \infty < t < \infty } \} $
 +
and, in general, on any arbitrarily wide strip of finite width parallel to that line. The case when an entire periodic function   f( z)
 +
tends to a certain finite or infinite limit at each of the two ends of the period strip is characterized by the fact that the series (*) contains only a finite number of terms, i.e.   f( z)
 +
should be a [[Trigonometric polynomial|trigonometric polynomial]].
  
Any meromorphic periodic function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072170/p07217052.png" /> throughout <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072170/p07217053.png" /> with basic period <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072170/p07217054.png" /> can be represented as the quotient of two entire periodic functions with the same period, i.e. as the quotient of two series of the form (*). In particular, the class of all [[Trigonometric functions|trigonometric functions]] can be described as the class of meromorphic periodic functions with period <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072170/p07217055.png" /> that in each period strip have only a finite number of poles and tend to a definite limit at each end of the period strip.
+
Any meromorphic periodic function   f( z)
 +
throughout   \mathbf C
 +
with basic period   2 \omega
 +
can be represented as the quotient of two entire periodic functions with the same period, i.e. as the quotient of two series of the form (*). In particular, the class of all [[Trigonometric functions|trigonometric functions]] can be described as the class of meromorphic periodic functions with period   2 \pi
 +
that in each period strip have only a finite number of poles and tend to a definite limit at each end of the period strip.
  
 
====References====
 
====References====
Line 33: Line 107:
  
 
====Comments====
 
====Comments====
In 1), the assertion that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072170/p07217056.png" /> has period <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072170/p07217057.png" /> means that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072170/p07217058.png" />, and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072170/p07217059.png" /> implies <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072170/p07217060.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/p/p072/p072170/p07217061.png" />.
+
In 1), the assertion that   f
 +
has period   T
 +
means that $  T \neq 0 $,  
 +
and   x \in X
 +
implies   x \pm  T \in X
 +
and $  f( x \pm  T) = f( x) $.
  
 
Double-periodic functions are also known as elliptic functions (cf. [[Elliptic function|Elliptic function]]).
 
Double-periodic functions are also known as elliptic functions (cf. [[Elliptic function|Elliptic function]]).

Latest revision as of 08:05, 6 June 2020


A function having a period (cf. Period of a function).

Let a function f be defined on X \subset \mathbf R and have period T . To obtain the graph of f it is sufficient to have the graph of f on [ a, a+ T] \cap X , where a is a certain number, and shift it along \mathbf R over \pm T, \pm 2T ,\dots . If a periodic function f with period T has a finite derivative f ^ { \prime } , then f ^ { \prime } is a periodic function with the same period. Let f be integrable over any segment and have period T . The indefinite integral F( x)= \int _ {0} ^ {x} f( t) dt has period T if \int _ {0} ^ {T} f( t) dt = 0 , otherwise it is non-periodic, such as for example for f( x) = \cos x+ 1 , where F( x) = \sin x + x .

A.A. Konyushkov

A periodic function of a complex variable z is a single-valued analytic function f( z) having only isolated singular points (cf. Singular point) in the complex z - plane \mathbf C and for which there exists a complex number p \neq 0 , called a period of the function f( z) , such that

f( z+ p) = f( z),\ \ z \in \mathbf C .

Any linear combination of the periods of a given periodic function f( z) with integer coefficients is also a period of f( z) . The set of all periods of a given periodic function f( z) \neq \textrm{ const } constitutes a discrete Abelian group under addition, called the period group of f( z) . If the basis of this group consists of one unique basic, or primitive, period 2 \omega = 2 \omega _ {1} \neq 0 , i.e. if any period p is an integer multiple of 2 \omega , then f( z) is called a simply-periodic function. In the case of a basis consisting of two basic periods 2 \omega _ {1} , 2 \omega _ {3} , \mathop{\rm Im} ( \omega _ {1} / \omega _ {3} ) \neq 0 , one has a double-periodic function. If the periodic function f( z) is not a constant, then a basis of its period group cannot consist of more than two basic independent periods (Jacobi's theorem).

Any strip of the form

\{ {z = ( \tau e ^ {i \alpha } + t) 2 \omega } : {- \infty < \tau < \infty , 0 \leq t < 1 ,\ 0 < \alpha \leq \pi /2 } \} ,

where 2 \omega is one of the basic periods of f( z) or is congruent to it, is called a period strip of f( z) ; one usually takes \alpha = \pi /2 , i.e. one considers a period strip with sides perpendicular to the basic period 2 \omega . In each period strip, a periodic function takes any of its values and moreover equally often.

Any entire periodic function f( z) can be expanded into a Fourier series throughout \mathbf C :

\tag{* } f( z) = \sum _ {k=- \infty } ^ \infty a _ {k} e ^ {\pi ikz/ \omega } ,

a _ {k} = \frac{1}{2 \omega } \int\limits _ {- \infty } ^ \infty f( t) e ^ {- \pi ikt/ \omega } dt,

which converges uniformly and absolutely on the straight line \{ {z = t \omega } : {- \infty < t < \infty } \} and, in general, on any arbitrarily wide strip of finite width parallel to that line. The case when an entire periodic function f( z) tends to a certain finite or infinite limit at each of the two ends of the period strip is characterized by the fact that the series (*) contains only a finite number of terms, i.e. f( z) should be a trigonometric polynomial.

Any meromorphic periodic function f( z) throughout \mathbf C with basic period 2 \omega can be represented as the quotient of two entire periodic functions with the same period, i.e. as the quotient of two series of the form (*). In particular, the class of all trigonometric functions can be described as the class of meromorphic periodic functions with period 2 \pi that in each period strip have only a finite number of poles and tend to a definite limit at each end of the period strip.

References

[1] A.I. Markushevich, "Theory of functions of a complex variable" , 2 , Chelsea (1977) (Translated from Russian)

E.D. Solomentsev

Comments

In 1), the assertion that f has period T means that T \neq 0 , and x \in X implies x \pm T \in X and f( x \pm T) = f( x) .

Double-periodic functions are also known as elliptic functions (cf. Elliptic function).

References

[a1] C.L. Siegel, "Topics in complex functions" , 1 , Wiley, reprint (1988)
How to Cite This Entry:
Periodic function. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Periodic_function&oldid=15049
This article was adapted from an original article by A.A. Konyushkov, E.D. Solomentsev (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article