Difference between revisions of "Pedal curve"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
| Line 1: | Line 1: | ||
| − | + | <!-- | |
| + | p0719501.png | ||
| + | $#A+1 = 19 n = 0 | ||
| + | $#C+1 = 19 : ~/encyclopedia/old_files/data/P071/P.0701950 Pedal curve | ||
| + | Automatically converted into TeX, above some diagnostics. | ||
| + | Please remove this comment and the {{TEX|auto}} line below, | ||
| + | if TeX found to be correct. | ||
| + | --> | ||
| − | + | {{TEX|auto}} | |
| + | {{TEX|done}} | ||
| − | + | ''of a curve $ l $ | |
| + | with respect to a point $ O $'' | ||
| + | |||
| + | The set of bases to the perpendiculars dropped from the point $ O $ | ||
| + | to the tangents to the curve $ l $. | ||
| + | For example, the [[Pascal limaçon|Pascal limaçon]] is the pedal of a circle with respect to the point $ O $( | ||
| + | see Fig.). The pedal (curve) of a plane curve $ x = x( t) , y = y( t) $ | ||
| + | relative to the coordinate origin is | ||
| + | |||
| + | $$ | ||
| + | X = x - x ^ \prime | ||
| + | \frac{xx ^ \prime + yy ^ \prime }{x ^ \prime 2 + y ^ \prime 2 } | ||
| + | ,\ \ | ||
| + | Y = y - y ^ \prime | ||
| + | \frac{xx ^ \prime + yy ^ \prime }{x ^ \prime 2 + y ^ \prime 2 } | ||
| + | . | ||
| + | $$ | ||
<img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/p071950a.gif" /> | <img style="border:1px solid;" src="https://www.encyclopediaofmath.org/legacyimages/common_img/p071950a.gif" /> | ||
| Line 9: | Line 33: | ||
Figure: p071950a | Figure: p071950a | ||
| − | The equation for the pedal of a curve | + | The equation for the pedal of a curve $ x= x( t), y= y( t), z= z( t) $ |
| + | in space relative to the origin is | ||
| − | + | $$ | |
| + | X = x - x ^ \prime | ||
| + | \frac{xx ^ \prime + yy ^ \prime + zz ^ \prime }{x ^ \prime 2 + y ^ \prime 2 + z ^ \prime 2 } | ||
| + | ,\ \ | ||
| + | Y = y - y ^ \prime | ||
| + | \frac{xx ^ \prime + yy ^ \prime + zz ^ \prime }{x ^ \prime 2 + y ^ \prime 2 + z ^ \prime 2 } | ||
| + | , | ||
| + | $$ | ||
| − | + | $$ | |
| + | Z = z - z ^ \prime | ||
| + | \frac{xx ^ \prime + yy ^ \prime + zz | ||
| + | ^ \prime }{x ^ \prime 2 + y ^ \prime 2 + z ^ \prime 2 } | ||
| + | . | ||
| + | $$ | ||
| − | The antipedal of a curve | + | The antipedal of a curve $ l $ |
| + | with respect to a point $ O $ | ||
| + | is the name given to the curve with as pedal, with respect to the point $ O $, | ||
| + | the curve $ l $. | ||
| − | The pedal of a surface with respect to a point | + | The pedal of a surface with respect to a point $ O $ |
| + | is the set of bases to the perpendiculars dropped from the point $ O $ | ||
| + | to the tangent planes to the surface. The equation for the pedal of a surface $ F( x, y, z) = 0 $ | ||
| + | with respect to the coordinate origin is | ||
| − | + | $$ | |
| + | X = F _ {x} \Phi ,\ \ | ||
| + | Y = F _ {y} \Phi ,\ \ | ||
| + | Z = F _ {z} \Phi , | ||
| + | $$ | ||
where | where | ||
| − | + | $$ | |
| − | + | \Phi = | |
| − | + | \frac{xF _ {x} + yF _ {y} + zF _ {z} }{F _ {x} ^ { 2 } + F _ {y} ^ { 2 } + F _ {z} ^ { 2 } } | |
| + | . | ||
| + | $$ | ||
====Comments==== | ====Comments==== | ||
| − | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> M. Berger, "Geometry" , '''I''' , Springer (1987)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> G. Darboux, "Leçons sur la théorie générale des surfaces et ses applications géométriques du calcul infinitésimal" , '''1–4''' , Gauthier-Villars (1887–1896)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> M. Berger, "Geometry" , '''I''' , Springer (1987)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top"> G. Darboux, "Leçons sur la théorie générale des surfaces et ses applications géométriques du calcul infinitésimal" , '''1–4''' , Gauthier-Villars (1887–1896)</TD></TR></table> | ||
Latest revision as of 08:05, 6 June 2020
of a curve $ l $
with respect to a point $ O $
The set of bases to the perpendiculars dropped from the point $ O $ to the tangents to the curve $ l $. For example, the Pascal limaçon is the pedal of a circle with respect to the point $ O $( see Fig.). The pedal (curve) of a plane curve $ x = x( t) , y = y( t) $ relative to the coordinate origin is
$$ X = x - x ^ \prime \frac{xx ^ \prime + yy ^ \prime }{x ^ \prime 2 + y ^ \prime 2 } ,\ \ Y = y - y ^ \prime \frac{xx ^ \prime + yy ^ \prime }{x ^ \prime 2 + y ^ \prime 2 } . $$
Figure: p071950a
The equation for the pedal of a curve $ x= x( t), y= y( t), z= z( t) $ in space relative to the origin is
$$ X = x - x ^ \prime \frac{xx ^ \prime + yy ^ \prime + zz ^ \prime }{x ^ \prime 2 + y ^ \prime 2 + z ^ \prime 2 } ,\ \ Y = y - y ^ \prime \frac{xx ^ \prime + yy ^ \prime + zz ^ \prime }{x ^ \prime 2 + y ^ \prime 2 + z ^ \prime 2 } , $$
$$ Z = z - z ^ \prime \frac{xx ^ \prime + yy ^ \prime + zz ^ \prime }{x ^ \prime 2 + y ^ \prime 2 + z ^ \prime 2 } . $$
The antipedal of a curve $ l $ with respect to a point $ O $ is the name given to the curve with as pedal, with respect to the point $ O $, the curve $ l $.
The pedal of a surface with respect to a point $ O $ is the set of bases to the perpendiculars dropped from the point $ O $ to the tangent planes to the surface. The equation for the pedal of a surface $ F( x, y, z) = 0 $ with respect to the coordinate origin is
$$ X = F _ {x} \Phi ,\ \ Y = F _ {y} \Phi ,\ \ Z = F _ {z} \Phi , $$
where
$$ \Phi = \frac{xF _ {x} + yF _ {y} + zF _ {z} }{F _ {x} ^ { 2 } + F _ {y} ^ { 2 } + F _ {z} ^ { 2 } } . $$
Comments
References
| [a1] | M. Berger, "Geometry" , I , Springer (1987) |
| [a2] | G. Darboux, "Leçons sur la théorie générale des surfaces et ses applications géométriques du calcul infinitésimal" , 1–4 , Gauthier-Villars (1887–1896) |
Pedal curve. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Pedal_curve&oldid=17030