Namespaces
Variants
Actions

Difference between revisions of "Oscillating differential equation"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
An ordinary differential equation which has at least one [[Oscillating solution|oscillating solution]]. There are different concepts of the oscillation of a solution. The most widespread are oscillation at a point (usually taken to be <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070470/o0704701.png" />) and oscillation on an interval. A non-zero solution of the equation
+
<!--
 +
o0704701.png
 +
$#A+1 = 52 n = 5
 +
$#C+1 = 52 : ~/encyclopedia/old_files/data/O070/O.0700470 Oscillating differential equation
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070470/o0704702.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070470/o0704703.png" />, is called oscillating at the point <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070470/o0704705.png" /> (or on an interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070470/o0704706.png" />) if it has a sequence of zeros which converges to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070470/o0704707.png" /> (respectively, there are at least <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070470/o0704708.png" /> zeros in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070470/o0704709.png" /> counted according to their multiplicity). Equation (1) is oscillating at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070470/o07047010.png" /> or on an interval <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070470/o07047011.png" /> if its solutions are oscillating (at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070470/o07047012.png" />, respectively, on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070470/o07047013.png" />).
+
An ordinary differential equation which has at least one [[Oscillating solution|oscillating solution]]. There are different concepts of the oscillation of a solution. The most widespread are oscillation at a point (usually taken to be  $  + \infty $)  
 +
and oscillation on an interval. A non-zero solution of the equation
  
Among equations which are oscillatory at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070470/o07047014.png" /> the equations which possess the properties <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070470/o07047015.png" /> or <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070470/o07047016.png" />, i.e. which are compatible in a specific sense with one of the equations
+
$$ \tag{1 }
 +
u  ^ {(} n)  = f( t, u , u  ^  \prime  \dots u  ^ {(} n- 1) ),\  n \geq  2 ,
 +
$$
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070470/o07047017.png" /></td> </tr></table>
+
where  $  f( t, 0 \dots 0) = 0 $,
 +
is called oscillating at the point  $  + \infty $(
 +
or on an interval  $  I  $)
 +
if it has a sequence of zeros which converges to  $  + \infty $(
 +
respectively, there are at least  $  n $
 +
zeros in  $  I $
 +
counted according to their multiplicity). Equation (1) is oscillating at  $  + \infty $
 +
or on an interval  $  I $
 +
if its solutions are oscillating (at  $  + \infty $,
 +
respectively, on  $  I  $).
  
are distinguished. Equation (1) is said to possess property <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070470/o07047019.png" /> if all its solutions defined in a neighbourhood of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070470/o07047020.png" /> are oscillating when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070470/o07047021.png" /> is even; when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070470/o07047022.png" /> is odd, they should either be oscillating or satisfy the condition
+
Among equations which are oscillatory at  $  + \infty $
 +
the equations which possess the properties  $  A $
 +
or  $  B $,
 +
i.e. which are compatible in a specific sense with one of the equations
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070470/o07047023.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
$$
 +
u  ^ {(} n)  = - u \  \textrm{ or } \  u  ^ {(} n) =  u ,
 +
$$
  
If every solution of equation (1) defined in a neighbourhood of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070470/o07047024.png" />, when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070470/o07047025.png" /> is even, is either oscillating, or satisfies condition (2) or
+
are distinguished. Equation (1) is said to possess property  $  A $
 +
if all its solutions defined in a neighbourhood of $  + \infty $
 +
are oscillating when $  n $
 +
is even; when  $  n $
 +
is odd, they should either be oscillating or satisfy the condition
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070470/o07047026.png" /></td> <td valign="top" style="width:5%;text-align:right;">(3)</td></tr></table>
+
$$ \tag{2 }
 +
\lim\limits _ {t \rightarrow + \infty }  u  ^ {(} i- 1) ( t)  = 0,\  i = 1 \dots n.
 +
$$
  
while when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070470/o07047027.png" /> is odd, it is either oscillating or satisfies condition (3), then the equation possesses property <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070470/o07047029.png" />.
+
If every solution of equation (1) defined in a neighbourhood of  $  + \infty $,
 +
when $  n $
 +
is even, is either oscillating, or satisfies condition (2) or
 +
 
 +
$$ \tag{3 }
 +
\lim\limits _ {t \rightarrow + \infty }  | u  ^ {(} i- 1) ( t) |  = + \infty ,\ \
 +
i = 1 \dots n,
 +
$$
 +
 
 +
while when  $  n $
 +
is odd, it is either oscillating or satisfies condition (3), then the equation possesses property $  B $.
  
 
The linear equation
 
The linear equation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070470/o07047030.png" /></td> <td valign="top" style="width:5%;text-align:right;">(4)</td></tr></table>
+
$$ \tag{4 }
 +
u  ^ {(} n)  = a( t) u
 +
$$
  
with a locally summable coefficient <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070470/o07047031.png" /> possesses property <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070470/o07047032.png" /> (property <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070470/o07047033.png" />) if
+
with a locally summable coefficient $  a:  [ t _ {0} , + \infty ) \rightarrow \mathbf R $
 +
possesses property $  A $(
 +
property $  B $)  
 +
if
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070470/o07047034.png" /></td> </tr></table>
+
$$
 +
a( t)  \leq  0 \  ( a( t)  \geq  0) \  \textrm{ when }  t \geq  t _ {0}  $$
  
 
and either
 
and either
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070470/o07047035.png" /></td> </tr></table>
+
$$
 +
\int\limits _ {t _ {0} } ^ { {+ }  \infty } t ^ {n- 1- \epsilon } | a( t) |  dt  = + \infty
 +
$$
  
 
or
 
or
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070470/o07047036.png" /></td> </tr></table>
+
$$
 +
a( t)  \leq 
 +
\frac{\mu _ {n} - \epsilon }{t  ^ {n} }
 +
\  \left ( a( t)  \geq 
 +
\frac{\nu _ {n} + \epsilon }{t  ^ {n} }
 +
\right )
 +
$$
  
when <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070470/o07047037.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070470/o07047038.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070470/o07047039.png" /> is the smallest (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070470/o07047040.png" /> is the largest) of the local minima (maxima) of the polynomial <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070470/o07047041.png" /> (see [[#References|[1]]]–[[#References|[5]]]).
+
when $  t \geq  t _ {0} $,  
 +
where $  \epsilon > 0 $
 +
and $  \mu _ {n} $
 +
is the smallest ( $  \nu _ {n} $
 +
is the largest) of the local minima (maxima) of the polynomial $  x( x- 1) \dots ( x- n+ 1) $(
 +
see [[#References|[1]]]–[[#References|[5]]]).
  
 
An equation of Emden–Fowler type
 
An equation of Emden–Fowler type
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070470/o07047042.png" /></td> <td valign="top" style="width:5%;text-align:right;">(5)</td></tr></table>
+
$$ \tag{5 }
 +
u  ^ {(} n)  = a( t) | u |  ^  \lambda    \mathop{\rm sign}  u ,\ \
 +
\lambda > 0,\  \lambda \neq 1,
 +
$$
  
with a locally summable non-positive (non-negative) coefficient <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070470/o07047043.png" /> possesses property <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070470/o07047044.png" /> (property <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070470/o07047045.png" />) if and only if
+
with a locally summable non-positive (non-negative) coefficient $  a:  [ t _ {0} , + \infty ) \rightarrow \mathbf R $
 +
possesses property $  A $(
 +
property $  B $)  
 +
if and only if
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070470/o07047046.png" /></td> </tr></table>
+
$$
 +
\int\limits _ {t _ {0} } ^ { {+ }  \infty } t  ^  \mu  | a( t) |  dt  = + \infty ,
 +
$$
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070470/o07047047.png" /> (see [[#References|[4]]], [[#References|[6]]], [[#References|[7]]]).
+
where $  \mu = \min \{ n- 1, ( n- 1) \lambda \} $(
 +
see [[#References|[4]]], [[#References|[6]]], [[#References|[7]]]).
  
 
In a number of cases the question of the oscillation of equation (1) can be reduced to the same question for the standard equations of the form (4) and (5) using a [[Comparison theorem|comparison theorem]] (see [[#References|[11]]]).
 
In a number of cases the question of the oscillation of equation (1) can be reduced to the same question for the standard equations of the form (4) and (5) using a [[Comparison theorem|comparison theorem]] (see [[#References|[11]]]).
  
In studying the oscillatory properties of equations with deviating argument, certain specific features arise. For example, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070470/o07047048.png" /> is odd, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070470/o07047049.png" />, and if for large <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070470/o07047050.png" /> the inequality
+
In studying the oscillatory properties of equations with deviating argument, certain specific features arise. For example, if $  n $
 +
is odd, $  \Delta > 0 $,  
 +
and if for large $  t $
 +
the inequality
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070470/o07047051.png" /></td> </tr></table>
+
$$
 +
a( t)  \leq  a _ {0}  < - n! \Delta  ^ {-} n
 +
$$
  
 
is fulfilled, then all non-zero solutions of the equation
 
is fulfilled, then all non-zero solutions of the equation
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070470/o07047052.png" /></td> </tr></table>
+
$$
 +
u  ^ {(} n) ( t)  = a( t) u( t - \Delta )
 +
$$
  
are oscillatory at <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070470/o07047053.png" /> (see [[#References|[10]]], [[#References|[11]]]). At the same time, if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070470/o07047054.png" /> is non-positive and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070470/o07047055.png" /> is odd, the non-retarded equation (4) always has a non-oscillating solution.
+
are oscillatory at $  + \infty $(
 +
see [[#References|[10]]], [[#References|[11]]]). At the same time, if $  a $
 +
is non-positive and $  n $
 +
is odd, the non-retarded equation (4) always has a non-oscillating solution.
  
 
The concepts of oscillation and non-oscillation on an interval are generally studied for linear homogeneous equations. They are of fundamental value in the theory of boundary value problems (see [[#References|[12]]]).
 
The concepts of oscillation and non-oscillation on an interval are generally studied for linear homogeneous equations. They are of fundamental value in the theory of boundary value problems (see [[#References|[12]]]).
Line 63: Line 142:
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A. Kneser,  "Untersuchungen über die reellen Nullstellen der Integrale linearer Integralgleichungen"  ''Math. Ann.'' , '''42'''  (1893)  pp. 409–435</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  J.G. Mikusinksi,  "On Fite's oscillation theorems"  ''Colloq. Math.'' , '''2'''  (1951)  pp. 34–39</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  V.A. Kondrat'ev,  "The oscillatory character of solutions of the equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070470/o07047056.png" />"  ''Trudy Moskov. Mat. Obshch.'' , '''10'''  (1961)  pp. 419–436  (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  I.T. Kiguradze,  "On the oscillatory character of solutions of the equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070470/o07047057.png" />"  ''Mat. Sb.'' , '''65''' :  2  (1964)  pp. 172–187  (In Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  T.A. Chanturiya,  "On a comparison theorem for linear differential equations"  ''Math. USSR Izv.'' , '''10''' :  5  (1976)  pp. 1075–1088  ''Izv. Akad. Nauk. SSSR Ser. Mat.'' , '''40''' :  5  (1976)  pp. 1128–1142</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  I. Ličko,  M. Švec,  "La charactère oscillatoire des solutions de l'équation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070470/o07047058.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070470/o07047059.png" />"  ''Chekhosl. Mat. Zh.'' , '''13'''  (1963)  pp. 481–491</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  I.T. Kiguradze,  "On the oscillatory and monotone solutions of ordinary differential equations"  ''Arch. Math.'' , '''14''' :  1  (1978)  pp. 21–44</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top">  C.A. Swanson,  "Comparison and oscillation theory of linear differential equations" , Acad. Press  (1968)</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top">  P. Hartman,  "Ordinary differential equations" , Birkhäuser  (1982)</TD></TR><TR><TD valign="top">[10]</TD> <TD valign="top">  A.D. Myshkis,  "Linear differential equations with retarded argument" , Moscow  (1972)  (In Russian)</TD></TR><TR><TD valign="top">[11]</TD> <TD valign="top">  R.G. Koplatadze,  T.A. Chanturiya,  "On the oscillatory properties of differential equations with deviating argument" , Tbilisi  (1977)  (In Russian)</TD></TR><TR><TD valign="top">[12]</TD> <TD valign="top">  A.Yu. Levin,  "Non-oscillation of the solutions of the equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070470/o07047060.png" />"  ''Russian Math. Surveys'' , '''24''' :  2  (1969)  pp. 43–99  ''Uspekhi Mat. Nauk'' , '''24''' :  2  (1969)  pp. 43–96</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  A. Kneser,  "Untersuchungen über die reellen Nullstellen der Integrale linearer Integralgleichungen"  ''Math. Ann.'' , '''42'''  (1893)  pp. 409–435</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  J.G. Mikusinksi,  "On Fite's oscillation theorems"  ''Colloq. Math.'' , '''2'''  (1951)  pp. 34–39</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  V.A. Kondrat'ev,  "The oscillatory character of solutions of the equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070470/o07047056.png" />"  ''Trudy Moskov. Mat. Obshch.'' , '''10'''  (1961)  pp. 419–436  (In Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top">  I.T. Kiguradze,  "On the oscillatory character of solutions of the equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070470/o07047057.png" />"  ''Mat. Sb.'' , '''65''' :  2  (1964)  pp. 172–187  (In Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top">  T.A. Chanturiya,  "On a comparison theorem for linear differential equations"  ''Math. USSR Izv.'' , '''10''' :  5  (1976)  pp. 1075–1088  ''Izv. Akad. Nauk. SSSR Ser. Mat.'' , '''40''' :  5  (1976)  pp. 1128–1142</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top">  I. Ličko,  M. Švec,  "La charactère oscillatoire des solutions de l'équation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070470/o07047058.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070470/o07047059.png" />"  ''Chekhosl. Mat. Zh.'' , '''13'''  (1963)  pp. 481–491</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top">  I.T. Kiguradze,  "On the oscillatory and monotone solutions of ordinary differential equations"  ''Arch. Math.'' , '''14''' :  1  (1978)  pp. 21–44</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top">  C.A. Swanson,  "Comparison and oscillation theory of linear differential equations" , Acad. Press  (1968)</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top">  P. Hartman,  "Ordinary differential equations" , Birkhäuser  (1982)</TD></TR><TR><TD valign="top">[10]</TD> <TD valign="top">  A.D. Myshkis,  "Linear differential equations with retarded argument" , Moscow  (1972)  (In Russian)</TD></TR><TR><TD valign="top">[11]</TD> <TD valign="top">  R.G. Koplatadze,  T.A. Chanturiya,  "On the oscillatory properties of differential equations with deviating argument" , Tbilisi  (1977)  (In Russian)</TD></TR><TR><TD valign="top">[12]</TD> <TD valign="top">  A.Yu. Levin,  "Non-oscillation of the solutions of the equation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/o/o070/o070470/o07047060.png" />"  ''Russian Math. Surveys'' , '''24''' :  2  (1969)  pp. 43–99  ''Uspekhi Mat. Nauk'' , '''24''' :  2  (1969)  pp. 43–96</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
 
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  J.K. Hale,  "Ordinary differential equations" , Wiley  (1969)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  W.T. Reid,  "Sturmian theory for ordinary differential equations" , Springer  (1980)</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  J.K. Hale,  "Ordinary differential equations" , Wiley  (1969)</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  W.T. Reid,  "Sturmian theory for ordinary differential equations" , Springer  (1980)</TD></TR></table>

Latest revision as of 08:04, 6 June 2020


An ordinary differential equation which has at least one oscillating solution. There are different concepts of the oscillation of a solution. The most widespread are oscillation at a point (usually taken to be $ + \infty $) and oscillation on an interval. A non-zero solution of the equation

$$ \tag{1 } u ^ {(} n) = f( t, u , u ^ \prime \dots u ^ {(} n- 1) ),\ n \geq 2 , $$

where $ f( t, 0 \dots 0) = 0 $, is called oscillating at the point $ + \infty $( or on an interval $ I $) if it has a sequence of zeros which converges to $ + \infty $( respectively, there are at least $ n $ zeros in $ I $ counted according to their multiplicity). Equation (1) is oscillating at $ + \infty $ or on an interval $ I $ if its solutions are oscillating (at $ + \infty $, respectively, on $ I $).

Among equations which are oscillatory at $ + \infty $ the equations which possess the properties $ A $ or $ B $, i.e. which are compatible in a specific sense with one of the equations

$$ u ^ {(} n) = - u \ \textrm{ or } \ u ^ {(} n) = u , $$

are distinguished. Equation (1) is said to possess property $ A $ if all its solutions defined in a neighbourhood of $ + \infty $ are oscillating when $ n $ is even; when $ n $ is odd, they should either be oscillating or satisfy the condition

$$ \tag{2 } \lim\limits _ {t \rightarrow + \infty } u ^ {(} i- 1) ( t) = 0,\ i = 1 \dots n. $$

If every solution of equation (1) defined in a neighbourhood of $ + \infty $, when $ n $ is even, is either oscillating, or satisfies condition (2) or

$$ \tag{3 } \lim\limits _ {t \rightarrow + \infty } | u ^ {(} i- 1) ( t) | = + \infty ,\ \ i = 1 \dots n, $$

while when $ n $ is odd, it is either oscillating or satisfies condition (3), then the equation possesses property $ B $.

The linear equation

$$ \tag{4 } u ^ {(} n) = a( t) u $$

with a locally summable coefficient $ a: [ t _ {0} , + \infty ) \rightarrow \mathbf R $ possesses property $ A $( property $ B $) if

$$ a( t) \leq 0 \ ( a( t) \geq 0) \ \textrm{ when } t \geq t _ {0} $$

and either

$$ \int\limits _ {t _ {0} } ^ { {+ } \infty } t ^ {n- 1- \epsilon } | a( t) | dt = + \infty $$

or

$$ a( t) \leq \frac{\mu _ {n} - \epsilon }{t ^ {n} } \ \left ( a( t) \geq \frac{\nu _ {n} + \epsilon }{t ^ {n} } \right ) $$

when $ t \geq t _ {0} $, where $ \epsilon > 0 $ and $ \mu _ {n} $ is the smallest ( $ \nu _ {n} $ is the largest) of the local minima (maxima) of the polynomial $ x( x- 1) \dots ( x- n+ 1) $( see [1][5]).

An equation of Emden–Fowler type

$$ \tag{5 } u ^ {(} n) = a( t) | u | ^ \lambda \mathop{\rm sign} u ,\ \ \lambda > 0,\ \lambda \neq 1, $$

with a locally summable non-positive (non-negative) coefficient $ a: [ t _ {0} , + \infty ) \rightarrow \mathbf R $ possesses property $ A $( property $ B $) if and only if

$$ \int\limits _ {t _ {0} } ^ { {+ } \infty } t ^ \mu | a( t) | dt = + \infty , $$

where $ \mu = \min \{ n- 1, ( n- 1) \lambda \} $( see [4], [6], [7]).

In a number of cases the question of the oscillation of equation (1) can be reduced to the same question for the standard equations of the form (4) and (5) using a comparison theorem (see [11]).

In studying the oscillatory properties of equations with deviating argument, certain specific features arise. For example, if $ n $ is odd, $ \Delta > 0 $, and if for large $ t $ the inequality

$$ a( t) \leq a _ {0} < - n! \Delta ^ {-} n $$

is fulfilled, then all non-zero solutions of the equation

$$ u ^ {(} n) ( t) = a( t) u( t - \Delta ) $$

are oscillatory at $ + \infty $( see [10], [11]). At the same time, if $ a $ is non-positive and $ n $ is odd, the non-retarded equation (4) always has a non-oscillating solution.

The concepts of oscillation and non-oscillation on an interval are generally studied for linear homogeneous equations. They are of fundamental value in the theory of boundary value problems (see [12]).

References

[1] A. Kneser, "Untersuchungen über die reellen Nullstellen der Integrale linearer Integralgleichungen" Math. Ann. , 42 (1893) pp. 409–435
[2] J.G. Mikusinksi, "On Fite's oscillation theorems" Colloq. Math. , 2 (1951) pp. 34–39
[3] V.A. Kondrat'ev, "The oscillatory character of solutions of the equation " Trudy Moskov. Mat. Obshch. , 10 (1961) pp. 419–436 (In Russian)
[4] I.T. Kiguradze, "On the oscillatory character of solutions of the equation " Mat. Sb. , 65 : 2 (1964) pp. 172–187 (In Russian)
[5] T.A. Chanturiya, "On a comparison theorem for linear differential equations" Math. USSR Izv. , 10 : 5 (1976) pp. 1075–1088 Izv. Akad. Nauk. SSSR Ser. Mat. , 40 : 5 (1976) pp. 1128–1142
[6] I. Ličko, M. Švec, "La charactère oscillatoire des solutions de l'équation , " Chekhosl. Mat. Zh. , 13 (1963) pp. 481–491
[7] I.T. Kiguradze, "On the oscillatory and monotone solutions of ordinary differential equations" Arch. Math. , 14 : 1 (1978) pp. 21–44
[8] C.A. Swanson, "Comparison and oscillation theory of linear differential equations" , Acad. Press (1968)
[9] P. Hartman, "Ordinary differential equations" , Birkhäuser (1982)
[10] A.D. Myshkis, "Linear differential equations with retarded argument" , Moscow (1972) (In Russian)
[11] R.G. Koplatadze, T.A. Chanturiya, "On the oscillatory properties of differential equations with deviating argument" , Tbilisi (1977) (In Russian)
[12] A.Yu. Levin, "Non-oscillation of the solutions of the equation " Russian Math. Surveys , 24 : 2 (1969) pp. 43–99 Uspekhi Mat. Nauk , 24 : 2 (1969) pp. 43–96

Comments

References

[a1] J.K. Hale, "Ordinary differential equations" , Wiley (1969)
[a2] W.T. Reid, "Sturmian theory for ordinary differential equations" , Springer (1980)
How to Cite This Entry:
Oscillating differential equation. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Oscillating_differential_equation&oldid=12302
This article was adapted from an original article by I.T. Kiguradze (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article