Difference between revisions of "Normal operator"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | A | + | <!-- |
+ | n0675701.png | ||
+ | $#A+1 = 40 n = 0 | ||
+ | $#C+1 = 40 : ~/encyclopedia/old_files/data/N067/N.0607570 Normal operator | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
+ | A closed [[Linear operator|linear operator]] $ A $ | ||
+ | defined on a linear subspace $ D _ {A} $ | ||
+ | that is dense in a Hilbert space $ H $ | ||
+ | such that $ A ^ {*} A = AA ^ {*} $, | ||
+ | where $ A ^ {*} $ | ||
+ | is the operator adjoint to $ A $. | ||
+ | If $ A $ | ||
+ | is normal, then $ D _ {A ^ {*} } = D _ {A} $ | ||
+ | and $ \| A ^ {*} x \| = \| A x \| $ | ||
+ | for every $ x $. | ||
+ | Conversely, these conditions guarantee that $ A $ | ||
+ | is normal. If $ A $ | ||
+ | is normal, then so are $ A ^ {*} $; | ||
+ | $ \alpha A + \beta I $ | ||
+ | for any $ \alpha , \beta \in \mathbf C $; | ||
+ | $ A ^ {-} 1 $ | ||
+ | when it exists; and if $ AB = BA $, | ||
+ | where $ B $ | ||
+ | is a bounded linear operator, then also $ A ^ {*} B = BA ^ {*} $. | ||
A normal operator has: | A normal operator has: | ||
Line 5: | Line 35: | ||
1) the multiplicative decomposition | 1) the multiplicative decomposition | ||
− | + | $$ | |
+ | A = U \sqrt {A ^ {*} A } = \sqrt {A ^ {*} A } U , | ||
+ | $$ | ||
− | + | $$ | |
+ | A ^ {*} = U ^ {-} 1 \sqrt {A ^ {*} A } = \sqrt {A ^ {*} A } U ^ {-} 1 , | ||
+ | $$ | ||
− | where | + | where $ U $ |
+ | is a unitary operator which is uniquely determined on the orthogonal complement of the null space of $ A $ | ||
+ | and $ A ^ {*} $; | ||
2) the additive decomposition | 2) the additive decomposition | ||
− | + | $$ | |
+ | A = A _ {1} + iA _ {2} ,\ \ | ||
+ | A ^ {*} = A _ {1} - iA _ {2} , | ||
+ | $$ | ||
− | where | + | where $ A _ {1} $ |
+ | and $ A _ {2} $ | ||
+ | are uniquely determined self-adjoint commuting operators. | ||
− | The additive decomposition implies that for an ordered pair | + | The additive decomposition implies that for an ordered pair $ ( A, A ^ {*} ) $ |
+ | there exists a unique two-dimensional [[Spectral function|spectral function]] $ E ( \Delta _ \zeta ) $, | ||
+ | where $ \Delta _ \zeta $ | ||
+ | is a two-dimensional interval, $ \Delta _ \zeta = \Delta _ \xi \times \Delta _ \eta $, | ||
+ | $ \zeta = \xi + i \eta $, | ||
+ | such that | ||
− | + | $$ | |
+ | A = \int\limits _ {\Delta _ \infty } \zeta dE ( \Delta _ \zeta ),\ \ | ||
+ | A ^ {*} = \int\limits _ {\Delta _ \infty } \overline \zeta \; dE ( | ||
+ | \Delta _ \zeta ). | ||
+ | $$ | ||
− | The same decomposition also implies that a normal operator | + | The same decomposition also implies that a normal operator $ A $ |
+ | is a function of a certain self-adjoint operator $ C $, | ||
+ | $ A = F ( C) $. | ||
+ | Conversely, every function of some self-adjoint operator is normal. | ||
− | An important property of a normal operator | + | An important property of a normal operator $ A $ |
+ | is the fact that $ \| A ^ {n} \| = \| A \| ^ {n} $, | ||
+ | which implies that the [[Spectral radius|spectral radius]] of a normal operator $ A $ | ||
+ | is its norm $ \| A \| $. | ||
+ | Eigen elements of a normal operator corresponding to distinct eigen values are orthogonal. | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.I. Plesner, "Spectral theory of linear operators" , F. Ungar (1965) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> W. Rudin, "Functional analysis" , McGraw-Hill (1973)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> A.I. Plesner, "Spectral theory of linear operators" , F. Ungar (1965) (Translated from Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> W. Rudin, "Functional analysis" , McGraw-Hill (1973)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J.B. Conway, "Subnormal operators" , Pitman (1981)</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> J.B. Conway, "Subnormal operators" , Pitman (1981)</TD></TR></table> |
Latest revision as of 08:03, 6 June 2020
A closed linear operator $ A $
defined on a linear subspace $ D _ {A} $
that is dense in a Hilbert space $ H $
such that $ A ^ {*} A = AA ^ {*} $,
where $ A ^ {*} $
is the operator adjoint to $ A $.
If $ A $
is normal, then $ D _ {A ^ {*} } = D _ {A} $
and $ \| A ^ {*} x \| = \| A x \| $
for every $ x $.
Conversely, these conditions guarantee that $ A $
is normal. If $ A $
is normal, then so are $ A ^ {*} $;
$ \alpha A + \beta I $
for any $ \alpha , \beta \in \mathbf C $;
$ A ^ {-} 1 $
when it exists; and if $ AB = BA $,
where $ B $
is a bounded linear operator, then also $ A ^ {*} B = BA ^ {*} $.
A normal operator has:
1) the multiplicative decomposition
$$ A = U \sqrt {A ^ {*} A } = \sqrt {A ^ {*} A } U , $$
$$ A ^ {*} = U ^ {-} 1 \sqrt {A ^ {*} A } = \sqrt {A ^ {*} A } U ^ {-} 1 , $$
where $ U $ is a unitary operator which is uniquely determined on the orthogonal complement of the null space of $ A $ and $ A ^ {*} $;
2) the additive decomposition
$$ A = A _ {1} + iA _ {2} ,\ \ A ^ {*} = A _ {1} - iA _ {2} , $$
where $ A _ {1} $ and $ A _ {2} $ are uniquely determined self-adjoint commuting operators.
The additive decomposition implies that for an ordered pair $ ( A, A ^ {*} ) $ there exists a unique two-dimensional spectral function $ E ( \Delta _ \zeta ) $, where $ \Delta _ \zeta $ is a two-dimensional interval, $ \Delta _ \zeta = \Delta _ \xi \times \Delta _ \eta $, $ \zeta = \xi + i \eta $, such that
$$ A = \int\limits _ {\Delta _ \infty } \zeta dE ( \Delta _ \zeta ),\ \ A ^ {*} = \int\limits _ {\Delta _ \infty } \overline \zeta \; dE ( \Delta _ \zeta ). $$
The same decomposition also implies that a normal operator $ A $ is a function of a certain self-adjoint operator $ C $, $ A = F ( C) $. Conversely, every function of some self-adjoint operator is normal.
An important property of a normal operator $ A $ is the fact that $ \| A ^ {n} \| = \| A \| ^ {n} $, which implies that the spectral radius of a normal operator $ A $ is its norm $ \| A \| $. Eigen elements of a normal operator corresponding to distinct eigen values are orthogonal.
References
[1] | A.I. Plesner, "Spectral theory of linear operators" , F. Ungar (1965) (Translated from Russian) |
[2] | W. Rudin, "Functional analysis" , McGraw-Hill (1973) |
Comments
References
[a1] | J.B. Conway, "Subnormal operators" , Pitman (1981) |
Normal operator. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Normal_operator&oldid=17283