Namespaces
Variants
Actions

Difference between revisions of "Multi-dimensional variational problem"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
 
Line 1: Line 1:
 +
<!--
 +
m0651501.png
 +
$#A+1 = 25 n = 0
 +
$#C+1 = 25 : ~/encyclopedia/old_files/data/M065/M.0605150 Multi\AAhdimensional variational problem,
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
''variational problem involving partial derivatives''
 
''variational problem involving partial derivatives''
  
 
A problem in the calculus of variations (cf. [[Variational calculus|Variational calculus]]) in which it is required to determine an extremum of a functional depending on a function of several independent variables. Ordinary variational problems, in which functionals of functions of one independent variable are considered, may be called one-dimensional variational problems, in this sense.
 
A problem in the calculus of variations (cf. [[Variational calculus|Variational calculus]]) in which it is required to determine an extremum of a functional depending on a function of several independent variables. Ordinary variational problems, in which functionals of functions of one independent variable are considered, may be called one-dimensional variational problems, in this sense.
  
An example of a two-dimensional variational problem is the problem of determining a function of two independent variables, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065150/m0651501.png" />, which, together with its first-order partial derivatives, is continuous and yields an extremum of the functional
+
An example of a two-dimensional variational problem is the problem of determining a function of two independent variables, $  u ( x , y ) $,
 +
which, together with its first-order partial derivatives, is continuous and yields an extremum of the functional
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065150/m0651502.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
+
$$ \tag{1 }
 +
I ( u)  = {\int\limits \int\limits } _ { D }
 +
F ( x , y , u , u _ {x} , u _ {y} ) d x  d y
 +
$$
  
 
under the boundary condition
 
under the boundary condition
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065150/m0651503.png" /></td> <td valign="top" style="width:5%;text-align:right;">(2)</td></tr></table>
+
$$ \tag{2 }
 +
u ( x , y ) \mid  _ {l}  = \
 +
u _ {0} ( x , y ) ,
 +
$$
 +
 
 +
where  $  l $
 +
is a closed contour bounding a domain  $  D $,
 +
$  u _ {0} ( x , y ) $
 +
is a given function and  $  F ( x , y , u , u _ {x} , u _ {y} ) $
 +
is a twice continuously-differentiable function jointly in its arguments. Let  $  u ( x , y ) $
 +
be a solution of the problem (1), (2). Substitution of a comparison function  $  u ( x , y ) + \alpha \eta ( x , y ) $,
 +
where  $  \eta ( x , y ) \mid  _ {l} = 0 $
 +
and  $  \alpha $
 +
is a numerical parameter, into (1), differentiation with respect to  $  \alpha $
 +
and equating  $  \alpha = 0 $,
 +
gives the following expression for the first variation of the functional:
 +
 
 +
$$ \tag{3 }
 +
\delta I  = {\int\limits \int\limits } _ { D }
 +
( F _ {u} \eta + F _ {u _ {x}  }
 +
\eta _ {x} + F _ {u _ {y}  }
 +
\eta _ {y} )  d x  d y .
 +
$$
 +
 
 +
If  $  u ( x , y ) $
 +
has continuous second-order derivatives, then it is easy to show that a necessary condition for  $  \delta I $
 +
to vanish is:
 +
 
 +
$$ \tag{4 }
 +
F _ {u} -
 +
 
 +
\frac \partial {\partial  x }
 +
 
 +
F _ {u _ {x}  }
 +
-  
 +
\frac \partial {\partial  y }
 +
 
 +
F _ {u _ {y}  }  = 0 .
 +
$$
 +
 
 +
Equation (4) is called the Euler–Ostrogradski equation (sometimes the Ostrogradski equation). This equation must be satisfied by a function  $  u ( x , y ) $
 +
which gives an extremum of (1) under the boundary conditions (2). The Euler–Ostrogradski equation is analogous to the [[Euler equation|Euler equation]] for one-dimensional problems. In expanded form, (4) is a second-order partial differential equation.
  
where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065150/m0651504.png" /> is a closed contour bounding a domain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065150/m0651505.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065150/m0651506.png" /> is a given function and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065150/m0651507.png" /> is a twice continuously-differentiable function jointly in its arguments. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065150/m0651508.png" /> be a solution of the problem (1), (2). Substitution of a comparison function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065150/m0651509.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065150/m06515010.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065150/m06515011.png" /> is a numerical parameter, into (1), differentiation with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065150/m06515012.png" /> and equating <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065150/m06515013.png" />, gives the following expression for the first variation of the functional:
+
In the case of a triple integral and a function $  u ( x , y , z ) $
 +
depending on three independent variables, the Euler–Ostrogradski equation takes the form:
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065150/m06515014.png" /></td> <td valign="top" style="width:5%;text-align:right;">(3)</td></tr></table>
+
$$
 +
F _ {u} -
  
If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065150/m06515015.png" /> has continuous second-order derivatives, then it is easy to show that a necessary condition for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065150/m06515016.png" /> to vanish is:
+
\frac \partial {\partial  x }
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065150/m06515017.png" /></td> <td valign="top" style="width:5%;text-align:right;">(4)</td></tr></table>
+
F _ {u _ {x}  } -
  
Equation (4) is called the Euler–Ostrogradski equation (sometimes the Ostrogradski equation). This equation must be satisfied by a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065150/m06515018.png" /> which gives an extremum of (1) under the boundary conditions (2). The Euler–Ostrogradski equation is analogous to the [[Euler equation|Euler equation]] for one-dimensional problems. In expanded form, (4) is a second-order partial differential equation.
+
\frac \partial {\partial  y }
  
In the case of a triple integral and a function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065150/m06515019.png" /> depending on three independent variables, the Euler–Ostrogradski equation takes the form:
+
F _ {u _ {y}  } -
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065150/m06515020.png" /></td> </tr></table>
+
\frac \partial {\partial  z }
 +
F _ {u _ {z}  }  = 0 .
 +
$$
  
The following condition is an analogue of the [[Legendre condition|Legendre condition]]. In order that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065150/m06515021.png" /> gives at least a weak extremum of (1) it is necessary that at each interior point of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065150/m06515022.png" />,
+
The following condition is an analogue of the [[Legendre condition|Legendre condition]]. In order that $  u ( x , y ) $
 +
gives at least a weak extremum of (1) it is necessary that at each interior point of $  D $,
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065150/m06515023.png" /></td> </tr></table>
+
$$
 +
F _ {u _ {x}  u _ {x} }
 +
F _ {u _ {y}  u _ {y} } -
 +
F _ {u _ {x}  u _ {y} } ^ { 2 }  \geq  0 .
 +
$$
  
For a minimum necessarily <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065150/m06515024.png" />, and for a maximum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m065/m065150/m06515025.png" />.
+
For a minimum necessarily $  F _ {u _ {x}  u _ {x} } \geq  0 $,  
 +
and for a maximum $  F _ {u _ {x}  u _ {x} } \leq  0 $.
  
 
Discontinuous multi-dimensional variational problems have also been considered (see [[#References|[4]]]).
 
Discontinuous multi-dimensional variational problems have also been considered (see [[#References|[4]]]).

Latest revision as of 08:01, 6 June 2020


variational problem involving partial derivatives

A problem in the calculus of variations (cf. Variational calculus) in which it is required to determine an extremum of a functional depending on a function of several independent variables. Ordinary variational problems, in which functionals of functions of one independent variable are considered, may be called one-dimensional variational problems, in this sense.

An example of a two-dimensional variational problem is the problem of determining a function of two independent variables, $ u ( x , y ) $, which, together with its first-order partial derivatives, is continuous and yields an extremum of the functional

$$ \tag{1 } I ( u) = {\int\limits \int\limits } _ { D } F ( x , y , u , u _ {x} , u _ {y} ) d x d y $$

under the boundary condition

$$ \tag{2 } u ( x , y ) \mid _ {l} = \ u _ {0} ( x , y ) , $$

where $ l $ is a closed contour bounding a domain $ D $, $ u _ {0} ( x , y ) $ is a given function and $ F ( x , y , u , u _ {x} , u _ {y} ) $ is a twice continuously-differentiable function jointly in its arguments. Let $ u ( x , y ) $ be a solution of the problem (1), (2). Substitution of a comparison function $ u ( x , y ) + \alpha \eta ( x , y ) $, where $ \eta ( x , y ) \mid _ {l} = 0 $ and $ \alpha $ is a numerical parameter, into (1), differentiation with respect to $ \alpha $ and equating $ \alpha = 0 $, gives the following expression for the first variation of the functional:

$$ \tag{3 } \delta I = {\int\limits \int\limits } _ { D } ( F _ {u} \eta + F _ {u _ {x} } \eta _ {x} + F _ {u _ {y} } \eta _ {y} ) d x d y . $$

If $ u ( x , y ) $ has continuous second-order derivatives, then it is easy to show that a necessary condition for $ \delta I $ to vanish is:

$$ \tag{4 } F _ {u} - \frac \partial {\partial x } F _ {u _ {x} } - \frac \partial {\partial y } F _ {u _ {y} } = 0 . $$

Equation (4) is called the Euler–Ostrogradski equation (sometimes the Ostrogradski equation). This equation must be satisfied by a function $ u ( x , y ) $ which gives an extremum of (1) under the boundary conditions (2). The Euler–Ostrogradski equation is analogous to the Euler equation for one-dimensional problems. In expanded form, (4) is a second-order partial differential equation.

In the case of a triple integral and a function $ u ( x , y , z ) $ depending on three independent variables, the Euler–Ostrogradski equation takes the form:

$$ F _ {u} - \frac \partial {\partial x } F _ {u _ {x} } - \frac \partial {\partial y } F _ {u _ {y} } - \frac \partial {\partial z } F _ {u _ {z} } = 0 . $$

The following condition is an analogue of the Legendre condition. In order that $ u ( x , y ) $ gives at least a weak extremum of (1) it is necessary that at each interior point of $ D $,

$$ F _ {u _ {x} u _ {x} } F _ {u _ {y} u _ {y} } - F _ {u _ {x} u _ {y} } ^ { 2 } \geq 0 . $$

For a minimum necessarily $ F _ {u _ {x} u _ {x} } \geq 0 $, and for a maximum $ F _ {u _ {x} u _ {x} } \leq 0 $.

Discontinuous multi-dimensional variational problems have also been considered (see [4]).

References

[1] R. Courant, D. Hilbert, "Methods of mathematical physics. Partial differential equations" , 2 , Interscience (1965) (Translated from German)
[2] V.I. Smirnov, "A course of higher mathematics" , 4 , Addison-Wesley (1964) (Translated from Russian)
[3] N.I. Akhiezer, "The calculus of variations" , Blaisdell (1962) (Translated from Russian)
[4] M.K. Kerimov, "On two-dimensional continuous problems of variational calculus" Trudy Tbilis. Mat. Inst. Akad. Nauk GruzSSR , 18 (1951) pp. 209–219 (In Russian)
How to Cite This Entry:
Multi-dimensional variational problem. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Multi-dimensional_variational_problem&oldid=13265
This article was adapted from an original article by I.B. Vapnyarskii (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article