|
|
Line 1: |
Line 1: |
− | An interpretation of a [[Formal language|formal language]] satisfying certain axioms (cf. [[Axiom|Axiom]]). The basic formal language is the first-order language <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064360/m0643601.png" /> of a given signature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064360/m0643602.png" /> including predicate symbols <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064360/m0643603.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064360/m0643604.png" />, function symbols <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064360/m0643605.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064360/m0643606.png" />, and constants <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064360/m0643607.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064360/m0643608.png" />. A model of the language <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064360/m0643609.png" /> is an [[Algebraic system|algebraic system]] of signature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064360/m06436010.png" />.
| + | <!-- |
| + | m0643601.png |
| + | $#A+1 = 55 n = 0 |
| + | $#C+1 = 55 : ~/encyclopedia/old_files/data/M064/M.0604360 Model (in logic) |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064360/m06436011.png" /> be a set of closed formulas in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064360/m06436012.png" />. A model for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064360/m06436013.png" /> is a model for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064360/m06436014.png" /> in which all formulas from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064360/m06436015.png" /> are true. A set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064360/m06436016.png" /> is called consistent if it has at least one model. The class of all models of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064360/m06436017.png" /> is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064360/m06436018.png" />. Consistency of a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064360/m06436019.png" /> means that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064360/m06436020.png" />.
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | A class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064360/m06436021.png" /> of models of a language <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064360/m06436022.png" /> is called axiomatizable if there is a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064360/m06436023.png" /> of closed formulas of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064360/m06436024.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064360/m06436025.png" />. The set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064360/m06436026.png" /> of all closed formulas of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064360/m06436027.png" /> that are true in each model of a given class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064360/m06436028.png" /> of models of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064360/m06436029.png" /> is called the [[Elementary theory|elementary theory]] of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064360/m06436030.png" />. Thus, a class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064360/m06436031.png" /> of models of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064360/m06436032.png" /> is axiomatizable if and only if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064360/m06436033.png" />. If a class <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064360/m06436034.png" /> consists of models isomorphic to a given model, then its elementary theory is called the elementary theory of this model.
| + | An interpretation of a [[Formal language|formal language]] satisfying certain axioms (cf. [[Axiom|Axiom]]). The basic formal language is the first-order language $ L _ \Omega $ |
| + | of a given signature $ \Omega $ |
| + | including predicate symbols $ R _ {i} $, |
| + | $ i \in I $, |
| + | function symbols $ f _ {j} $, |
| + | $ j \in J $, |
| + | and constants $ c _ {k} $, |
| + | $ k \in K $. |
| + | A model of the language $ L _ \Omega $ |
| + | is an [[Algebraic system|algebraic system]] of signature $ \Omega $. |
| | | |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064360/m06436035.png" /> be a model of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064360/m06436036.png" /> having universe <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064360/m06436037.png" />. One may associate to each element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064360/m06436038.png" /> a constant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064360/m06436039.png" /> and consider the first-order language <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064360/m06436040.png" /> of signature <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064360/m06436041.png" /> which is obtained from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064360/m06436042.png" /> by adding the constants <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064360/m06436043.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064360/m06436044.png" />. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064360/m06436045.png" /> is called the diagram language of the model <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064360/m06436046.png" />. The set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064360/m06436047.png" /> of all closed formulas of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064360/m06436048.png" /> which are true in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064360/m06436049.png" /> on replacing each constant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064360/m06436050.png" /> by the corresponding element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064360/m06436051.png" /> is called the description (or elementary diagram) of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064360/m06436052.png" />. The set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064360/m06436053.png" /> of those formulas from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064360/m06436054.png" /> which are atomic or negations of atomic formulas is called the diagram of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m064/m064360/m06436055.png" />. | + | Let $ \Sigma $ |
| + | be a set of closed formulas in $ L _ \Omega $. |
| + | A model for $ \Sigma $ |
| + | is a model for $ L _ \Omega $ |
| + | in which all formulas from $ \Sigma $ |
| + | are true. A set $ \Sigma $ |
| + | is called consistent if it has at least one model. The class of all models of $ \Sigma $ |
| + | is denoted by $ \mathop{\rm Mod} \Sigma $. |
| + | Consistency of a set $ \Sigma $ |
| + | means that $ \mathop{\rm Mod} \Sigma \neq \emptyset $. |
| + | |
| + | A class $ {\mathcal K} $ |
| + | of models of a language $ L _ \Omega $ |
| + | is called axiomatizable if there is a set $ \Sigma $ |
| + | of closed formulas of $ L _ \Omega $ |
| + | such that $ {\mathcal K} = \mathop{\rm Mod} \Sigma $. |
| + | The set $ T ( {\mathcal K} ) $ |
| + | of all closed formulas of $ L _ \Omega $ |
| + | that are true in each model of a given class $ {\mathcal K} $ |
| + | of models of $ L _ \Omega $ |
| + | is called the [[Elementary theory|elementary theory]] of $ {\mathcal K} $. |
| + | Thus, a class $ {\mathcal K} $ |
| + | of models of $ L _ \Omega $ |
| + | is axiomatizable if and only if $ {\mathcal K} = \mathop{\rm Mod} T ( {\mathcal K} ) $. |
| + | If a class $ {\mathcal K} $ |
| + | consists of models isomorphic to a given model, then its elementary theory is called the elementary theory of this model. |
| + | |
| + | Let $ \mathbf A $ |
| + | be a model of $ L _ \Omega $ |
| + | having universe $ A $. |
| + | One may associate to each element $ a \in A $ |
| + | a constant $ c _ {a} $ |
| + | and consider the first-order language $ L _ {\Omega A } $ |
| + | of signature $ \Omega A $ |
| + | which is obtained from $ \Omega $ |
| + | by adding the constants $ c _ {a} $, |
| + | $ a \in A $. |
| + | $ L _ {\Omega A } $ |
| + | is called the diagram language of the model $ \mathbf A $. |
| + | The set $ O ( \mathbf A ) $ |
| + | of all closed formulas of $ L _ {\Omega A } $ |
| + | which are true in $ \mathbf A $ |
| + | on replacing each constant $ c _ {a} $ |
| + | by the corresponding element $ a \in A $ |
| + | is called the description (or elementary diagram) of $ \mathbf A $. |
| + | The set $ D ( \mathbf A ) $ |
| + | of those formulas from $ O ( \mathbf A ) $ |
| + | which are atomic or negations of atomic formulas is called the diagram of $ A $. |
| | | |
| Along with models of first-order languages, models of other types (infinitary logic, [[Intuitionistic logic|intuitionistic logic]], many-sorted logic, second-order logic, [[Many-valued logic|many-valued logic]], and [[Modal logic|modal logic]]) have also been considered. | | Along with models of first-order languages, models of other types (infinitary logic, [[Intuitionistic logic|intuitionistic logic]], many-sorted logic, second-order logic, [[Many-valued logic|many-valued logic]], and [[Modal logic|modal logic]]) have also been considered. |
| | | |
| For references see [[Model theory|Model theory]]. | | For references see [[Model theory|Model theory]]. |
− |
| |
− |
| |
| | | |
| ====Comments==== | | ====Comments==== |
| English usage prefers the word "structure" where Russian speaks of a "model of a language" or an "algebraic system" ; "model" is reserved for structures satisfying a given theory (set of closed formulas). | | English usage prefers the word "structure" where Russian speaks of a "model of a language" or an "algebraic system" ; "model" is reserved for structures satisfying a given theory (set of closed formulas). |
An interpretation of a formal language satisfying certain axioms (cf. Axiom). The basic formal language is the first-order language $ L _ \Omega $
of a given signature $ \Omega $
including predicate symbols $ R _ {i} $,
$ i \in I $,
function symbols $ f _ {j} $,
$ j \in J $,
and constants $ c _ {k} $,
$ k \in K $.
A model of the language $ L _ \Omega $
is an algebraic system of signature $ \Omega $.
Let $ \Sigma $
be a set of closed formulas in $ L _ \Omega $.
A model for $ \Sigma $
is a model for $ L _ \Omega $
in which all formulas from $ \Sigma $
are true. A set $ \Sigma $
is called consistent if it has at least one model. The class of all models of $ \Sigma $
is denoted by $ \mathop{\rm Mod} \Sigma $.
Consistency of a set $ \Sigma $
means that $ \mathop{\rm Mod} \Sigma \neq \emptyset $.
A class $ {\mathcal K} $
of models of a language $ L _ \Omega $
is called axiomatizable if there is a set $ \Sigma $
of closed formulas of $ L _ \Omega $
such that $ {\mathcal K} = \mathop{\rm Mod} \Sigma $.
The set $ T ( {\mathcal K} ) $
of all closed formulas of $ L _ \Omega $
that are true in each model of a given class $ {\mathcal K} $
of models of $ L _ \Omega $
is called the elementary theory of $ {\mathcal K} $.
Thus, a class $ {\mathcal K} $
of models of $ L _ \Omega $
is axiomatizable if and only if $ {\mathcal K} = \mathop{\rm Mod} T ( {\mathcal K} ) $.
If a class $ {\mathcal K} $
consists of models isomorphic to a given model, then its elementary theory is called the elementary theory of this model.
Let $ \mathbf A $
be a model of $ L _ \Omega $
having universe $ A $.
One may associate to each element $ a \in A $
a constant $ c _ {a} $
and consider the first-order language $ L _ {\Omega A } $
of signature $ \Omega A $
which is obtained from $ \Omega $
by adding the constants $ c _ {a} $,
$ a \in A $.
$ L _ {\Omega A } $
is called the diagram language of the model $ \mathbf A $.
The set $ O ( \mathbf A ) $
of all closed formulas of $ L _ {\Omega A } $
which are true in $ \mathbf A $
on replacing each constant $ c _ {a} $
by the corresponding element $ a \in A $
is called the description (or elementary diagram) of $ \mathbf A $.
The set $ D ( \mathbf A ) $
of those formulas from $ O ( \mathbf A ) $
which are atomic or negations of atomic formulas is called the diagram of $ A $.
Along with models of first-order languages, models of other types (infinitary logic, intuitionistic logic, many-sorted logic, second-order logic, many-valued logic, and modal logic) have also been considered.
For references see Model theory.
English usage prefers the word "structure" where Russian speaks of a "model of a language" or an "algebraic system" ; "model" is reserved for structures satisfying a given theory (set of closed formulas).