Namespaces
Variants
Actions

Difference between revisions of "Mathieu group"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
 +
<!--
 +
m0627701.png
 +
$#A+1 = 26 n = 1
 +
$#C+1 = 26 : ~/encyclopedia/old_files/data/M062/M.0602770 Mathieu group
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
 +
 +
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
A [[Finite group|finite group]] isomorphic to one of the five groups discovered by E. Mathieu . The series of Mathieu groups consists of the groups denoted by
 
A [[Finite group|finite group]] isomorphic to one of the five groups discovered by E. Mathieu . The series of Mathieu groups consists of the groups denoted by
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062770/m0627701.png" /></td> </tr></table>
+
$$
 +
M _ {11} , M _ {12} , M _ {22} , M _ {23} , M _ {24} .
 +
$$
  
They are representable as permutation groups (cf. [[Permutation group|Permutation group]]) on sets with 11, 12, 22, 23, and 24 elements, respectively. The groups <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062770/m0627702.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062770/m0627703.png" /> are five-fold transitive. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062770/m0627704.png" /> is realized naturally as the [[Stabilizer|stabilizer]] in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062770/m0627705.png" /> of an element of the set on which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062770/m0627706.png" /> acts; similarly, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062770/m0627707.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062770/m0627708.png" /> are stabilizers of elements of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062770/m0627709.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062770/m06277010.png" />, respectively. The Mathieu groups have the respective orders
+
They are representable as permutation groups (cf. [[Permutation group|Permutation group]]) on sets with 11, 12, 22, 23, and 24 elements, respectively. The groups $  M _ {12} $
 +
and $  M _ {24} $
 +
are five-fold transitive. $  M _ {11} $
 +
is realized naturally as the [[Stabilizer|stabilizer]] in $  M _ {12} $
 +
of an element of the set on which $  M _ {12} $
 +
acts; similarly, $  M _ {23} $
 +
and $  M _ {22} $
 +
are stabilizers of elements of $  M _ {24} $
 +
and $  M _ {23} $,  
 +
respectively. The Mathieu groups have the respective orders
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062770/m06277011.png" /></td> </tr></table>
+
$$
 +
7  920 , 95  040 , 443  520 , 10  200  960 , 244  823  040.
 +
$$
  
When considering a Mathieu group, one often uses (see ) its representation as the group of automorphisms of the corresponding [[Steiner system|Steiner system]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062770/m06277012.png" />, i.e. of the set of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062770/m06277013.png" /> elements in which there is distinguished a system of
+
When considering a Mathieu group, one often uses (see ) its representation as the group of automorphisms of the corresponding [[Steiner system|Steiner system]] $  S( l, m, n) $,
 +
i.e. of the set of $  n $
 +
elements in which there is distinguished a system of
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062770/m06277014.png" /></td> </tr></table>
+
$$
 +
{\left ( \begin{array}{c}
 +
m \\
 +
l
 +
\end{array}
 +
\right )  ^ {-} 1 } {\left ( \begin{array}{c}
 +
n \\
 +
l
 +
\end{array}
  
subsets, called blocks, consisting of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062770/m06277015.png" /> elements of the set, and such that every set of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062770/m06277016.png" /> elements is contained in one and only one block. An automorphism of a Steiner system is defined as a permutation of the set of its elements which takes blocks into blocks. The list of Mathieu groups and corresponding Steiner systems for which they are automorphism groups is as follows: <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062770/m06277017.png" /> <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062770/m06277018.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062770/m06277019.png" /> <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062770/m06277020.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062770/m06277021.png" /> <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062770/m06277022.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062770/m06277023.png" /> <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062770/m06277024.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062770/m06277025.png" /> <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062770/m06277026.png" />.
+
\right ) }
 +
$$
 +
 
 +
subsets, called blocks, consisting of m $
 +
elements of the set, and such that every set of $  l $
 +
elements is contained in one and only one block. An automorphism of a Steiner system is defined as a permutation of the set of its elements which takes blocks into blocks. The list of Mathieu groups and corresponding Steiner systems for which they are automorphism groups is as follows: $  M _ {11} $—  
 +
$  S( 4, 5, 11) $;  
 +
$  M _ {12} $—  
 +
$  S( 5, 6, 12) $;  
 +
$  M _ {22} $—  
 +
$  S( 3, 6, 22) $;  
 +
$  M _ {23} $—  
 +
$  S( 4, 7, 23) $;  
 +
$  M _ {24} $—  
 +
$  S( 5, 8, 24) $.
  
 
The Mathieu groups were the first (and for over 80 years the only) known sporadic finite simple groups (cf. also [[Sporadic simple group|Sporadic simple group]]).
 
The Mathieu groups were the first (and for over 80 years the only) known sporadic finite simple groups (cf. also [[Sporadic simple group|Sporadic simple group]]).
Line 17: Line 66:
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1a]</TD> <TD valign="top">  E. Mathieu,  "Mémoire sur l'étude des fonctions de plusieures quantités, sur la manière de les formes et sur les substitutions qui les laissant invariables"  ''J. Math. Pures Appl.'' , '''6'''  (1861)  pp. 241–323</TD></TR><TR><TD valign="top">[1b]</TD> <TD valign="top">  E. Mathieu,  "Sur la fonction cinq fois transitive des 24 quantités"  ''J. Math. Pures Appl.'' , '''18'''  (1873)  pp. 25–46</TD></TR><TR><TD valign="top">[2a]</TD> <TD valign="top">  E. Witt,  "Die <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062770/m06277027.png" />-fach transitiven Gruppen von Matthieu"  ''Abh. Math. Sem. Univ. Hamburg'' , '''12'''  (1938)  pp. 256–264</TD></TR><TR><TD valign="top">[2b]</TD> <TD valign="top">  E. Witt,  "Ueber Steinersche Systeme"  ''Abh. Math. Sem. Univ. Hamburg'' , '''12'''  (1938)  pp. 265–275</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  V.D. Mazurov,  "Finite groups"  ''Itogi Nauk. i Tekhn. Algebra. Topol. Geom.'' , '''14'''  (1976)  pp. 5–56  (In Russian)</TD></TR></table>
 
<table><TR><TD valign="top">[1a]</TD> <TD valign="top">  E. Mathieu,  "Mémoire sur l'étude des fonctions de plusieures quantités, sur la manière de les formes et sur les substitutions qui les laissant invariables"  ''J. Math. Pures Appl.'' , '''6'''  (1861)  pp. 241–323</TD></TR><TR><TD valign="top">[1b]</TD> <TD valign="top">  E. Mathieu,  "Sur la fonction cinq fois transitive des 24 quantités"  ''J. Math. Pures Appl.'' , '''18'''  (1873)  pp. 25–46</TD></TR><TR><TD valign="top">[2a]</TD> <TD valign="top">  E. Witt,  "Die <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/m/m062/m062770/m06277027.png" />-fach transitiven Gruppen von Matthieu"  ''Abh. Math. Sem. Univ. Hamburg'' , '''12'''  (1938)  pp. 256–264</TD></TR><TR><TD valign="top">[2b]</TD> <TD valign="top">  E. Witt,  "Ueber Steinersche Systeme"  ''Abh. Math. Sem. Univ. Hamburg'' , '''12'''  (1938)  pp. 265–275</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top">  V.D. Mazurov,  "Finite groups"  ''Itogi Nauk. i Tekhn. Algebra. Topol. Geom.'' , '''14'''  (1976)  pp. 5–56  (In Russian)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====

Revision as of 07:59, 6 June 2020


A finite group isomorphic to one of the five groups discovered by E. Mathieu . The series of Mathieu groups consists of the groups denoted by

$$ M _ {11} , M _ {12} , M _ {22} , M _ {23} , M _ {24} . $$

They are representable as permutation groups (cf. Permutation group) on sets with 11, 12, 22, 23, and 24 elements, respectively. The groups $ M _ {12} $ and $ M _ {24} $ are five-fold transitive. $ M _ {11} $ is realized naturally as the stabilizer in $ M _ {12} $ of an element of the set on which $ M _ {12} $ acts; similarly, $ M _ {23} $ and $ M _ {22} $ are stabilizers of elements of $ M _ {24} $ and $ M _ {23} $, respectively. The Mathieu groups have the respective orders

$$ 7 920 , 95 040 , 443 520 , 10 200 960 , 244 823 040. $$

When considering a Mathieu group, one often uses (see ) its representation as the group of automorphisms of the corresponding Steiner system $ S( l, m, n) $, i.e. of the set of $ n $ elements in which there is distinguished a system of

$$ {\left ( \begin{array}{c} m \\ l \end{array} \right ) ^ {-} 1 } {\left ( \begin{array}{c} n \\ l \end{array} \right ) } $$

subsets, called blocks, consisting of $ m $ elements of the set, and such that every set of $ l $ elements is contained in one and only one block. An automorphism of a Steiner system is defined as a permutation of the set of its elements which takes blocks into blocks. The list of Mathieu groups and corresponding Steiner systems for which they are automorphism groups is as follows: $ M _ {11} $— $ S( 4, 5, 11) $; $ M _ {12} $— $ S( 5, 6, 12) $; $ M _ {22} $— $ S( 3, 6, 22) $; $ M _ {23} $— $ S( 4, 7, 23) $; $ M _ {24} $— $ S( 5, 8, 24) $.

The Mathieu groups were the first (and for over 80 years the only) known sporadic finite simple groups (cf. also Sporadic simple group).

References

[1a] E. Mathieu, "Mémoire sur l'étude des fonctions de plusieures quantités, sur la manière de les formes et sur les substitutions qui les laissant invariables" J. Math. Pures Appl. , 6 (1861) pp. 241–323
[1b] E. Mathieu, "Sur la fonction cinq fois transitive des 24 quantités" J. Math. Pures Appl. , 18 (1873) pp. 25–46
[2a] E. Witt, "Die -fach transitiven Gruppen von Matthieu" Abh. Math. Sem. Univ. Hamburg , 12 (1938) pp. 256–264
[2b] E. Witt, "Ueber Steinersche Systeme" Abh. Math. Sem. Univ. Hamburg , 12 (1938) pp. 265–275
[3] V.D. Mazurov, "Finite groups" Itogi Nauk. i Tekhn. Algebra. Topol. Geom. , 14 (1976) pp. 5–56 (In Russian)

Comments

For more information (e.g. character tables and maximal subgroups) see [a1].

References

[a1] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker, R.A. Wilson, "Atlas of finite groups" , Clarendon Press (1985)
How to Cite This Entry:
Mathieu group. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Mathieu_group&oldid=18116
This article was adapted from an original article by S.P. Strunkov (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article