Difference between revisions of "Luzin examples"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | l0610301.png | ||
+ | $#A+1 = 13 n = 0 | ||
+ | $#C+1 = 13 : ~/encyclopedia/old_files/data/L061/L.0601030 Luzin examples | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
''in the theory of functions of a complex variable'' | ''in the theory of functions of a complex variable'' | ||
Examples that characterize boundary [[Uniqueness properties of analytic functions|uniqueness properties of analytic functions]] (see [[#References|[1]]], [[#References|[2]]]). | Examples that characterize boundary [[Uniqueness properties of analytic functions|uniqueness properties of analytic functions]] (see [[#References|[1]]], [[#References|[2]]]). | ||
− | 1) For any set | + | 1) For any set $ E $ |
+ | of measure zero on the unit circle $ \Gamma = \{ {z } : {| z | = 1 } \} $, | ||
+ | N.N. Luzin constructed (1919, see [[#References|[1]]]) a function $ f ( z) $ | ||
+ | that is regular, analytic and bounded in the unit disc $ D = \{ {z } : {| z | < 1 } \} $ | ||
+ | and is such that $ f ( z) $ | ||
+ | does not have radial boundary values along each of the radii that end at points of $ E $. | ||
A similar example of Luzin and I.I. Privalov (1925, see [[#References|[2]]], [[#References|[3]]]) differs only by insignificant changes. | A similar example of Luzin and I.I. Privalov (1925, see [[#References|[2]]], [[#References|[3]]]) differs only by insignificant changes. | ||
− | 2) Luzin also constructed (1925, see [[#References|[2]]]) regular analytic functions | + | 2) Luzin also constructed (1925, see [[#References|[2]]]) regular analytic functions $ f _ {1} ( z) $ |
+ | and $ f _ {2} ( z) \not\equiv 0 $ | ||
+ | in $ D $ | ||
+ | that tend, respectively, to infinity and zero along all radii that end at points of some set of full measure $ 2 \pi $ | ||
+ | on $ \Gamma $. | ||
+ | This set $ E $ | ||
+ | is of the first Baire category (cf. [[Baire classes|Baire classes]]) on $ \Gamma $. | ||
See also [[Boundary properties of analytic functions|Boundary properties of analytic functions]]; [[Luzin–Privalov theorems|Luzin–Privalov theorems]]; [[Cluster set|Cluster set]]. | See also [[Boundary properties of analytic functions|Boundary properties of analytic functions]]; [[Luzin–Privalov theorems|Luzin–Privalov theorems]]; [[Cluster set|Cluster set]]. | ||
Line 13: | Line 36: | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> N.N. Luzin, , ''Collected works'' , '''1''' , Moscow (1953) pp. 267–269 (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N.N. Luzin, , ''Collected works'' , '''1''' , Moscow (1953) pp. 280–318 (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> I.I. [I.I. Privalov] Priwalow, "Randeigenschaften analytischer Funktionen" , Deutsch. Verlag Wissenschaft. (1956) (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> A. Lohwater, "The boundary behaviour of analytic functions" ''Itogi Nauki i Tekhn. Mat. Anal.'' , '''10''' (1973) pp. 99–259 (In Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> N.N. Luzin, , ''Collected works'' , '''1''' , Moscow (1953) pp. 267–269 (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> N.N. Luzin, , ''Collected works'' , '''1''' , Moscow (1953) pp. 280–318 (In Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> I.I. [I.I. Privalov] Priwalow, "Randeigenschaften analytischer Funktionen" , Deutsch. Verlag Wissenschaft. (1956) (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> A. Lohwater, "The boundary behaviour of analytic functions" ''Itogi Nauki i Tekhn. Mat. Anal.'' , '''10''' (1973) pp. 99–259 (In Russian)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> E.F. Collingwood, A.J. Lohwater, "The theory of cluster sets" , Cambridge Univ. Press (1966) pp. Chapt. 9</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> E.F. Collingwood, A.J. Lohwater, "The theory of cluster sets" , Cambridge Univ. Press (1966) pp. Chapt. 9</TD></TR></table> |
Latest revision as of 04:11, 6 June 2020
in the theory of functions of a complex variable
Examples that characterize boundary uniqueness properties of analytic functions (see [1], [2]).
1) For any set $ E $ of measure zero on the unit circle $ \Gamma = \{ {z } : {| z | = 1 } \} $, N.N. Luzin constructed (1919, see [1]) a function $ f ( z) $ that is regular, analytic and bounded in the unit disc $ D = \{ {z } : {| z | < 1 } \} $ and is such that $ f ( z) $ does not have radial boundary values along each of the radii that end at points of $ E $.
A similar example of Luzin and I.I. Privalov (1925, see [2], [3]) differs only by insignificant changes.
2) Luzin also constructed (1925, see [2]) regular analytic functions $ f _ {1} ( z) $ and $ f _ {2} ( z) \not\equiv 0 $ in $ D $ that tend, respectively, to infinity and zero along all radii that end at points of some set of full measure $ 2 \pi $ on $ \Gamma $. This set $ E $ is of the first Baire category (cf. Baire classes) on $ \Gamma $.
See also Boundary properties of analytic functions; Luzin–Privalov theorems; Cluster set.
References
[1] | N.N. Luzin, , Collected works , 1 , Moscow (1953) pp. 267–269 (In Russian) |
[2] | N.N. Luzin, , Collected works , 1 , Moscow (1953) pp. 280–318 (In Russian) |
[3] | I.I. [I.I. Privalov] Priwalow, "Randeigenschaften analytischer Funktionen" , Deutsch. Verlag Wissenschaft. (1956) (Translated from Russian) |
[4] | A. Lohwater, "The boundary behaviour of analytic functions" Itogi Nauki i Tekhn. Mat. Anal. , 10 (1973) pp. 99–259 (In Russian) |
Comments
References
[a1] | E.F. Collingwood, A.J. Lohwater, "The theory of cluster sets" , Cambridge Univ. Press (1966) pp. Chapt. 9 |
Luzin examples. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Luzin_examples&oldid=18316