|
|
Line 1: |
Line 1: |
| + | <!-- |
| + | l0607401.png |
| + | $#A+1 = 28 n = 0 |
| + | $#C+1 = 28 : ~/encyclopedia/old_files/data/L060/L.0600740 Logical matrix |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| + | |
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| + | |
| A system | | A system |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060740/l0607401.png" /></td> </tr></table>
| + | $$ |
| + | \mathfrak M = \langle M ; D , \& , \lor , \supset , \neg \rangle , |
| + | $$ |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060740/l0607402.png" /> is a non-empty set; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060740/l0607403.png" />; <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060740/l0607404.png" /> are [[binary operation]]s; and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060740/l0607405.png" /> is a [[unary operation]] on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060740/l0607406.png" />. Any formula of propositional logic, constructed from propositional variables <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060740/l0607407.png" /> by means of the logical connectives <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060740/l0607408.png" />, can be regarded as an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060740/l0607409.png" />-place function on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060740/l06074010.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060740/l06074011.png" /> are assumed to be variables with range of values <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060740/l06074012.png" /> and the logical connectives are interpreted as the corresponding operations of the logical matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060740/l06074013.png" />. A formula <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060740/l06074014.png" /> is said to be generally valid in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060740/l06074015.png" /> if for any values of the variables in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060740/l06074016.png" /> the value of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060740/l06074017.png" /> belongs to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060740/l06074018.png" />. A logical matrix <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060740/l06074019.png" /> is said to be characteristic for a propositional calculus <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060740/l06074020.png" /> if the formulas that are generally valid in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060740/l06074021.png" /> are exactly those that are deducible in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060740/l06074022.png" />. An example of a logical matrix is the system | + | where $ M $ |
| + | is a non-empty set; $ D \subseteq M $; |
| + | $ \& , \lor , \supset $ |
| + | are [[binary operation]]s; and $ \neg $ |
| + | is a [[unary operation]] on $ M $. |
| + | Any formula of propositional logic, constructed from propositional variables $ p _ {1} \dots p _ {n} $ |
| + | by means of the logical connectives $ \& , \lor , \supset , \neg $, |
| + | can be regarded as an $ n $- |
| + | place function on $ M $ |
| + | if $ p _ {1} \dots p _ {n} $ |
| + | are assumed to be variables with range of values $ M $ |
| + | and the logical connectives are interpreted as the corresponding operations of the logical matrix $ \mathfrak M $. |
| + | A formula $ \mathfrak A $ |
| + | is said to be generally valid in $ \mathfrak M $ |
| + | if for any values of the variables in $ M $ |
| + | the value of $ \mathfrak A $ |
| + | belongs to $ D $. |
| + | A logical matrix $ \mathfrak M $ |
| + | is said to be characteristic for a propositional calculus $ K $ |
| + | if the formulas that are generally valid in $ \mathfrak M $ |
| + | are exactly those that are deducible in $ K $. |
| + | An example of a logical matrix is the system |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060740/l06074023.png" /></td> </tr></table>
| + | $$ |
| + | \langle \{ 0 , 1 \} ; \{ 1 \} , \& , \lor , \supset , \neg \rangle , |
| + | $$ |
| | | |
| where | | where |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060740/l06074024.png" /></td> </tr></table>
| + | $$ |
| + | x \& y = \min \{ x , y \} , |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060740/l06074025.png" /></td> </tr></table>
| + | $$ |
| + | x \lor y = \max \{ x , y \} , |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060740/l06074026.png" /></td> </tr></table>
| + | $$ |
− | | + | x \supset y = \max \{ 1 - x , y \} , |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060740/l06074027.png" /></td> </tr></table>
| + | $$ |
− | | |
− | This logical matrix is characteristic for the classical propositional calculus. t logic','../p/p110060.htm','Set theory','../s/s084750.htm','Syntax','../s/s091900.htm','Undecidability','../u/u095140.htm','Unsolvability','../u/u095800.htm','ZFC','../z/z130100.htm')" style="background-color:yellow;">K. Gödel proved that it is impossible to construct a logical matrix with a finite set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/l/l060/l060740/l06074028.png" /> that is characteristic for the intuitionistic propositional calculus.
| |
| | | |
| + | $$ |
| + | \neg x = 1 - x . |
| + | $$ |
| | | |
| + | This logical matrix is characteristic for the classical propositional calculus. t logic','../p/p110060.htm','Set theory','../s/s084750.htm','Syntax','../s/s091900.htm','Undecidability','../u/u095140.htm','Unsolvability','../u/u095800.htm','ZFC','../z/z130100.htm')" style="background-color:yellow;">K. Gödel proved that it is impossible to construct a logical matrix with a finite set $ M $ |
| + | that is characteristic for the intuitionistic propositional calculus. |
| | | |
| ====Comments==== | | ====Comments==== |
− |
| |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Wójcicki, "Theory of logical calculi" , Kluwer (1988)</TD></TR></table> | | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> R. Wójcicki, "Theory of logical calculi" , Kluwer (1988)</TD></TR></table> |
Latest revision as of 04:11, 6 June 2020
A system
$$
\mathfrak M = \langle M ; D , \& , \lor , \supset , \neg \rangle ,
$$
where $ M $
is a non-empty set; $ D \subseteq M $;
$ \& , \lor , \supset $
are binary operations; and $ \neg $
is a unary operation on $ M $.
Any formula of propositional logic, constructed from propositional variables $ p _ {1} \dots p _ {n} $
by means of the logical connectives $ \& , \lor , \supset , \neg $,
can be regarded as an $ n $-
place function on $ M $
if $ p _ {1} \dots p _ {n} $
are assumed to be variables with range of values $ M $
and the logical connectives are interpreted as the corresponding operations of the logical matrix $ \mathfrak M $.
A formula $ \mathfrak A $
is said to be generally valid in $ \mathfrak M $
if for any values of the variables in $ M $
the value of $ \mathfrak A $
belongs to $ D $.
A logical matrix $ \mathfrak M $
is said to be characteristic for a propositional calculus $ K $
if the formulas that are generally valid in $ \mathfrak M $
are exactly those that are deducible in $ K $.
An example of a logical matrix is the system
$$
\langle \{ 0 , 1 \} ; \{ 1 \} , \& , \lor , \supset , \neg \rangle ,
$$
where
$$
x \& y = \min \{ x , y \} ,
$$
$$
x \lor y = \max \{ x , y \} ,
$$
$$
x \supset y = \max \{ 1 - x , y \} ,
$$
$$
\neg x = 1 - x .
$$
This logical matrix is characteristic for the classical propositional calculus. t logic','../p/p110060.htm','Set theory','../s/s084750.htm','Syntax','../s/s091900.htm','Undecidability','../u/u095140.htm','Unsolvability','../u/u095800.htm','ZFC','../z/z130100.htm')" style="background-color:yellow;">K. Gödel proved that it is impossible to construct a logical matrix with a finite set $ M $
that is characteristic for the intuitionistic propositional calculus.
References
[a1] | R. Wójcicki, "Theory of logical calculi" , Kluwer (1988) |
How to Cite This Entry:
Logical matrix. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Logical_matrix&oldid=39749
This article was adapted from an original article by V.E. Plisko (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098.
See original article