Difference between revisions of "Laplace method"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
+ | <!-- | ||
+ | l0575001.png | ||
+ | $#A+1 = 35 n = 0 | ||
+ | $#C+1 = 35 : ~/encyclopedia/old_files/data/L057/L.0507500 Laplace method | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
+ | |||
+ | {{TEX|auto}} | ||
+ | {{TEX|done}} | ||
+ | |||
''of asymptotic estimation'' | ''of asymptotic estimation'' | ||
− | A method for determining the asymptotic behaviour as < | + | A method for determining the asymptotic behaviour as $ 0 < \lambda \rightarrow + \infty $ |
+ | of Laplace integrals | ||
+ | |||
+ | $$ \tag{1 } | ||
+ | F ( \lambda ) = \int\limits _ \Omega | ||
+ | f ( x) e ^ {\lambda S ( x) } d x , | ||
+ | $$ | ||
− | + | where $ \Omega = [ a , b ] $ | |
+ | is a finite interval, $ S $ | ||
+ | is a real-valued function and $ f $ | ||
+ | is a complex-valued function, both sufficiently smooth for $ x \in \Omega $. | ||
+ | The asymptotic behaviour of $ F ( \lambda ) $ | ||
+ | is the sum of the contributions from points at which $ \max _ {x \in \Omega } S ( x) $ | ||
+ | is attained, if the number of these points is assumed to be finite. | ||
− | + | 1) If a maximum is attained at $ x = a $ | |
+ | and if $ S ^ { \prime } ( a) \neq 0 $, | ||
+ | then the contribution $ V _ {a} ( \lambda ) $ | ||
+ | from the point $ a $ | ||
+ | in the asymptotic behaviour of the integral (1) is equal to | ||
− | + | $$ | |
+ | V _ {a} ( \lambda ) = - | ||
− | + | \frac{f ( a) + O ( \lambda ^ {-} 1 ) }{\lambda S ^ { \prime } ( a) } | |
− | + | e ^ {\lambda S ( a) } . | |
+ | $$ | ||
− | + | 2) If a maximum is attained at an interior point $ x ^ {0} $ | |
+ | of the interval $ \Omega $ | ||
+ | and $ S ^ { \prime\prime } ( x ^ {0} ) \neq 0 $, | ||
+ | then its contribution equals | ||
− | + | $$ | |
+ | V _ {x ^ {0} } ( \lambda ) = \ | ||
+ | \sqrt {- | ||
+ | \frac{2 \pi }{\lambda S ^ { \prime\prime } ( x ^ {0} ) } | ||
+ | } | ||
+ | [ f ( x ^ {0} ) + O ( \lambda ^ {-} 1 ) ] e ^ | ||
+ | {\lambda S ( x ^ {0} ) } . | ||
+ | $$ | ||
− | + | This formula was obtained by P.S. Laplace [[#References|[1]]]. The case when $ f ( x) $ | |
+ | and $ S ^ { \prime } ( x) $ | ||
+ | have zeros of finite multiplicity at maximum points of $ S $ | ||
+ | has been completely investigated, and asymptotic expansions have been obtained (see [[#References|[2]]]–[[#References|[8]]]). The Laplace method can also be extended to the case of a contour $ \Omega $ | ||
+ | in the complex plane (see [[Saddle point method|Saddle point method]]). | ||
− | + | Let $ \Omega $ | |
+ | be a bounded domain in $ \mathbf R _ {x} ^ {n} $ | ||
+ | and suppose that the maximal $ m $ | ||
+ | of $ S ( x) $ | ||
+ | in the closure of $ \Omega $ | ||
+ | is attained only at an interior point $ x ^ {0} $, | ||
+ | where $ x ^ {0} $ | ||
+ | is a non-degenerate stationary point of $ S $. | ||
+ | Then | ||
− | + | $$ | |
+ | F ( \lambda ) = \left ( | ||
+ | \frac{2 \pi } \lambda | ||
+ | \right ) ^ {n/2} | ||
+ | | \mathop{\rm det} S _ {xx} ^ { \prime\prime } ( x ^ {0} ) | ^ {-} 1/2 | ||
+ | [ f ( x ^ {0} ) + O ( \lambda ^ {-} 1 ) ] | ||
+ | e ^ {\lambda S ( x ^ {0} ) } . | ||
+ | $$ | ||
− | + | In this case, asymptotic expansions for $ F ( \lambda ) $ | |
+ | have also been obtained. All the formulas given above hold for complex $ \lambda $, | ||
+ | $ | \lambda | \rightarrow \infty $, | ||
+ | $ | \mathop{\rm arg} \lambda | \leq \pi / 2 - \epsilon $. | ||
+ | There are also modifications of the Laplace method for the case when the dependence on the parameter is more complicated (see [[#References|[4]]], [[#References|[8]]]): | ||
+ | |||
+ | $$ | ||
+ | F ( \lambda ) = \int\limits _ {\Omega ( \lambda ) } | ||
+ | f ( x , \lambda ) e ^ {S ( x , \lambda ) } d x . | ||
+ | $$ | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> P.S. Laplace, "Essai philosophique sur les probabilités" , ''Oeuvres complètes'' , '''7''' , Gauthier-Villars (1886)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Erdélyi, "Asymptotic expansions" , Dover, reprint (1956)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> N.G. de Bruijn, "Asymptotic methods in analysis" , Dover, reprint (1981)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> M.A. Evgrafov, "Asymptotic estimates and entire functions" , Gordon & Breach (1961) (Translated from Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> E.T. Copson, "Asymptotic expansions" , Cambridge Univ. Press (1965)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> F.W.J. Olver, "Asymptotics and special functions" , Acad. Press (1974)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> E. Riekstyn'sh, "Asymptotic expansions of integrals" , '''1''' , Riga (1974) (In Russian)</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> M.V. Fedoryuk, "The method of steepest descent" , Moscow (1977) (In Russian)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> P.S. Laplace, "Essai philosophique sur les probabilités" , ''Oeuvres complètes'' , '''7''' , Gauthier-Villars (1886)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Erdélyi, "Asymptotic expansions" , Dover, reprint (1956)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> N.G. de Bruijn, "Asymptotic methods in analysis" , Dover, reprint (1981)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> M.A. Evgrafov, "Asymptotic estimates and entire functions" , Gordon & Breach (1961) (Translated from Russian)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> E.T. Copson, "Asymptotic expansions" , Cambridge Univ. Press (1965)</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> F.W.J. Olver, "Asymptotics and special functions" , Acad. Press (1974)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> E. Riekstyn'sh, "Asymptotic expansions of integrals" , '''1''' , Riga (1974) (In Russian)</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> M.V. Fedoryuk, "The method of steepest descent" , Moscow (1977) (In Russian)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== | ||
− | |||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[a1]</TD> <TD valign="top"> N. Bleistein, R.A. Handelsman, "Asymptotic expansions of integrals" , Holt, Rinehart & Winston (1975) pp. Chapt. 5</TD></TR></table> | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> N. Bleistein, R.A. Handelsman, "Asymptotic expansions of integrals" , Holt, Rinehart & Winston (1975) pp. Chapt. 5</TD></TR></table> |
Latest revision as of 22:15, 5 June 2020
of asymptotic estimation
A method for determining the asymptotic behaviour as $ 0 < \lambda \rightarrow + \infty $ of Laplace integrals
$$ \tag{1 } F ( \lambda ) = \int\limits _ \Omega f ( x) e ^ {\lambda S ( x) } d x , $$
where $ \Omega = [ a , b ] $ is a finite interval, $ S $ is a real-valued function and $ f $ is a complex-valued function, both sufficiently smooth for $ x \in \Omega $. The asymptotic behaviour of $ F ( \lambda ) $ is the sum of the contributions from points at which $ \max _ {x \in \Omega } S ( x) $ is attained, if the number of these points is assumed to be finite.
1) If a maximum is attained at $ x = a $ and if $ S ^ { \prime } ( a) \neq 0 $, then the contribution $ V _ {a} ( \lambda ) $ from the point $ a $ in the asymptotic behaviour of the integral (1) is equal to
$$ V _ {a} ( \lambda ) = - \frac{f ( a) + O ( \lambda ^ {-} 1 ) }{\lambda S ^ { \prime } ( a) } e ^ {\lambda S ( a) } . $$
2) If a maximum is attained at an interior point $ x ^ {0} $ of the interval $ \Omega $ and $ S ^ { \prime\prime } ( x ^ {0} ) \neq 0 $, then its contribution equals
$$ V _ {x ^ {0} } ( \lambda ) = \ \sqrt {- \frac{2 \pi }{\lambda S ^ { \prime\prime } ( x ^ {0} ) } } [ f ( x ^ {0} ) + O ( \lambda ^ {-} 1 ) ] e ^ {\lambda S ( x ^ {0} ) } . $$
This formula was obtained by P.S. Laplace [1]. The case when $ f ( x) $ and $ S ^ { \prime } ( x) $ have zeros of finite multiplicity at maximum points of $ S $ has been completely investigated, and asymptotic expansions have been obtained (see [2]–[8]). The Laplace method can also be extended to the case of a contour $ \Omega $ in the complex plane (see Saddle point method).
Let $ \Omega $ be a bounded domain in $ \mathbf R _ {x} ^ {n} $ and suppose that the maximal $ m $ of $ S ( x) $ in the closure of $ \Omega $ is attained only at an interior point $ x ^ {0} $, where $ x ^ {0} $ is a non-degenerate stationary point of $ S $. Then
$$ F ( \lambda ) = \left ( \frac{2 \pi } \lambda \right ) ^ {n/2} | \mathop{\rm det} S _ {xx} ^ { \prime\prime } ( x ^ {0} ) | ^ {-} 1/2 [ f ( x ^ {0} ) + O ( \lambda ^ {-} 1 ) ] e ^ {\lambda S ( x ^ {0} ) } . $$
In this case, asymptotic expansions for $ F ( \lambda ) $ have also been obtained. All the formulas given above hold for complex $ \lambda $, $ | \lambda | \rightarrow \infty $, $ | \mathop{\rm arg} \lambda | \leq \pi / 2 - \epsilon $. There are also modifications of the Laplace method for the case when the dependence on the parameter is more complicated (see [4], [8]):
$$ F ( \lambda ) = \int\limits _ {\Omega ( \lambda ) } f ( x , \lambda ) e ^ {S ( x , \lambda ) } d x . $$
References
[1] | P.S. Laplace, "Essai philosophique sur les probabilités" , Oeuvres complètes , 7 , Gauthier-Villars (1886) |
[2] | A. Erdélyi, "Asymptotic expansions" , Dover, reprint (1956) |
[3] | N.G. de Bruijn, "Asymptotic methods in analysis" , Dover, reprint (1981) |
[4] | M.A. Evgrafov, "Asymptotic estimates and entire functions" , Gordon & Breach (1961) (Translated from Russian) |
[5] | E.T. Copson, "Asymptotic expansions" , Cambridge Univ. Press (1965) |
[6] | F.W.J. Olver, "Asymptotics and special functions" , Acad. Press (1974) |
[7] | E. Riekstyn'sh, "Asymptotic expansions of integrals" , 1 , Riga (1974) (In Russian) |
[8] | M.V. Fedoryuk, "The method of steepest descent" , Moscow (1977) (In Russian) |
Comments
References
[a1] | N. Bleistein, R.A. Handelsman, "Asymptotic expansions of integrals" , Holt, Rinehart & Winston (1975) pp. Chapt. 5 |
Laplace method. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Laplace_method&oldid=17741