Difference between revisions of "Kantorovich process"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | k0551001.png | ||
+ | $#A+1 = 28 n = 0 | ||
+ | $#C+1 = 28 : ~/encyclopedia/old_files/data/K055/K.0505100 Kantorovich process | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | ( | + | An iterative method for improving the approximation to the value of a root of a non-linear functional (operator) equation (a generalization of Newton's method cf. [[Newton method|Newton method]]). For the equation $ P ( x) = 0 $, |
+ | where $ P $ | ||
+ | is a non-linear operator from one Banach space to another, the formula for calculating the root has the form | ||
− | + | $$ | |
+ | x _ {n+} 1 = x _ {n} - | ||
+ | [ P ^ { \prime } ( x _ {n} ) ] ^ {-} 1 P ( x _ {n} ) . | ||
+ | $$ | ||
− | + | (Here $ P ^ { \prime } $ | |
+ | is the [[Fréchet derivative|Fréchet derivative]].) Sometimes a modified process, given by the following formula, is used: | ||
− | 1 | + | $$ |
+ | \widetilde{x} _ {n+} 1 = \ | ||
+ | \widetilde{x} _ {n} - | ||
+ | [ P ^ { \prime } ( x _ {0} ) ] ^ {-} 1 P ( \widetilde{x} _ {n} ) . | ||
+ | $$ | ||
− | 2) | + | Suppose that the operator $ P $ |
+ | is twice continuously differentiable and that the following conditions hold (see [[#References|[2]]]): | ||
− | + | 1) the linear operator $ \Gamma _ {0} = [ P ^ { \prime } ( x _ {0} ) ] ^ {-} 1 $ | |
+ | exists; | ||
− | + | 2) $ \| \Gamma _ {0} P ( x _ {0} ) \| \leq \eta $; | |
− | + | 3) $ \| \Gamma _ {0} P ^ { \prime\prime } ( x) \| \leq K $ | |
+ | when $ \| x - x _ {0} \| \leq r $; | ||
− | + | 4) $ h = K \eta \leq 1 / 2 $; | |
− | + | 5) $ r \geq r _ {0} = ( 1 - \sqrt 1- 2h ) \eta / h $. | |
− | + | Then the equation $ P ( x) = 0 $ | |
+ | has a solution $ x ^ {*} $ | ||
+ | such that | ||
− | + | $$ | |
+ | \| x ^ {*} - x _ {0} \| \leq r _ {0} . | ||
+ | $$ | ||
− | and | + | The sequences $ x _ {n} $ |
+ | and $ \widetilde{x} _ {n} $ | ||
+ | converge to this solution, with | ||
− | + | $$ | |
+ | \| x ^ {*} - x _ {n} \| | ||
+ | \leq | ||
+ | \frac{( 2 h ) ^ {2 ^ {n} } \eta }{2 ^ {n} h } | ||
+ | , | ||
+ | $$ | ||
− | The Kantorovich process always converges to a root | + | and in the case $ h < 1 / 2 $, |
+ | |||
+ | $$ | ||
+ | \| x ^ {*} - \widetilde{x} _ {n} \| | ||
+ | \leq | ||
+ | \frac{( 1 - \sqrt 1- 2h ) ^ {n+} 1 \eta }{h} | ||
+ | . | ||
+ | $$ | ||
+ | |||
+ | The Kantorovich process always converges to a root $ x ^ {*} $ | ||
+ | of the equation $ P ( x) = 0 $, | ||
+ | provided that $ P $ | ||
+ | is sufficiently smooth, $ [ P ^ { \prime } ( x ^ {*} ) ] ^ {-} 1 $ | ||
+ | exists and the initial approximation $ x _ {0} $ | ||
+ | is chosen sufficiently close to $ x ^ {*} $. | ||
+ | If $ P ^ { \prime\prime } ( x) $ | ||
+ | exists and is continuous, then the convergence of the basic process is quadratic. The rate of convergence of the modified process is that of a decreasing geometric progression; the denominator of this progression tends to zero as $ x _ {0} \rightarrow x ^ {*} $. | ||
The process was proposed by L.V. Kantorovich [[#References|[1]]]. | The process was proposed by L.V. Kantorovich [[#References|[1]]]. | ||
Line 37: | Line 85: | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> L.V. Kantorovich, "On Newton's method for functional equations" ''Dokl. Akad. Nauk SSSR'' , '''59''' : 6 (1948) pp. 1237–1240 (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> L.V. Kantorovich, G.P. Akilov, "Functional analysis in normed spaces" , Pergamon (1964) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> M.A. Krasnosel'skii, G.M. Vainikko, P.P. Zabreiko, et al., "Approximate solution of operator equations" , Wolters-Noordhoff (1972) (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> L. Collatz, "Funktionalanalysis und numerische Mathematik" , Springer (1964)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> L.V. Kantorovich, "On Newton's method for functional equations" ''Dokl. Akad. Nauk SSSR'' , '''59''' : 6 (1948) pp. 1237–1240 (In Russian)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> L.V. Kantorovich, G.P. Akilov, "Functional analysis in normed spaces" , Pergamon (1964) (Translated from Russian)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> M.A. Krasnosel'skii, G.M. Vainikko, P.P. Zabreiko, et al., "Approximate solution of operator equations" , Wolters-Noordhoff (1972) (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> L. Collatz, "Funktionalanalysis und numerische Mathematik" , Springer (1964)</TD></TR></table> | ||
− | |||
− | |||
====Comments==== | ====Comments==== |
Latest revision as of 22:14, 5 June 2020
An iterative method for improving the approximation to the value of a root of a non-linear functional (operator) equation (a generalization of Newton's method cf. Newton method). For the equation $ P ( x) = 0 $,
where $ P $
is a non-linear operator from one Banach space to another, the formula for calculating the root has the form
$$ x _ {n+} 1 = x _ {n} - [ P ^ { \prime } ( x _ {n} ) ] ^ {-} 1 P ( x _ {n} ) . $$
(Here $ P ^ { \prime } $ is the Fréchet derivative.) Sometimes a modified process, given by the following formula, is used:
$$ \widetilde{x} _ {n+} 1 = \ \widetilde{x} _ {n} - [ P ^ { \prime } ( x _ {0} ) ] ^ {-} 1 P ( \widetilde{x} _ {n} ) . $$
Suppose that the operator $ P $ is twice continuously differentiable and that the following conditions hold (see [2]):
1) the linear operator $ \Gamma _ {0} = [ P ^ { \prime } ( x _ {0} ) ] ^ {-} 1 $ exists;
2) $ \| \Gamma _ {0} P ( x _ {0} ) \| \leq \eta $;
3) $ \| \Gamma _ {0} P ^ { \prime\prime } ( x) \| \leq K $ when $ \| x - x _ {0} \| \leq r $;
4) $ h = K \eta \leq 1 / 2 $;
5) $ r \geq r _ {0} = ( 1 - \sqrt 1- 2h ) \eta / h $.
Then the equation $ P ( x) = 0 $ has a solution $ x ^ {*} $ such that
$$ \| x ^ {*} - x _ {0} \| \leq r _ {0} . $$
The sequences $ x _ {n} $ and $ \widetilde{x} _ {n} $ converge to this solution, with
$$ \| x ^ {*} - x _ {n} \| \leq \frac{( 2 h ) ^ {2 ^ {n} } \eta }{2 ^ {n} h } , $$
and in the case $ h < 1 / 2 $,
$$ \| x ^ {*} - \widetilde{x} _ {n} \| \leq \frac{( 1 - \sqrt 1- 2h ) ^ {n+} 1 \eta }{h} . $$
The Kantorovich process always converges to a root $ x ^ {*} $ of the equation $ P ( x) = 0 $, provided that $ P $ is sufficiently smooth, $ [ P ^ { \prime } ( x ^ {*} ) ] ^ {-} 1 $ exists and the initial approximation $ x _ {0} $ is chosen sufficiently close to $ x ^ {*} $. If $ P ^ { \prime\prime } ( x) $ exists and is continuous, then the convergence of the basic process is quadratic. The rate of convergence of the modified process is that of a decreasing geometric progression; the denominator of this progression tends to zero as $ x _ {0} \rightarrow x ^ {*} $.
The process was proposed by L.V. Kantorovich [1].
References
[1] | L.V. Kantorovich, "On Newton's method for functional equations" Dokl. Akad. Nauk SSSR , 59 : 6 (1948) pp. 1237–1240 (In Russian) |
[2] | L.V. Kantorovich, G.P. Akilov, "Functional analysis in normed spaces" , Pergamon (1964) (Translated from Russian) |
[3] | M.A. Krasnosel'skii, G.M. Vainikko, P.P. Zabreiko, et al., "Approximate solution of operator equations" , Wolters-Noordhoff (1972) (Translated from Russian) |
[4] | L. Collatz, "Funktionalanalysis und numerische Mathematik" , Springer (1964) |
Comments
The modified process is also called the Newton–Raphson method.
References
[a1] | J.E. Denis jr., R. Schnable, "Numerical methods for unconstrained optimization and nonlinear equations" , Prentice-Hall (1983) |
[a2] | J.M. Ortega, W.C. Rheinboldt, "Iterative solution of non-linear equations in several variables" , Acad. Press (1970) |
Kantorovich process. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Kantorovich_process&oldid=14866