Namespaces
Variants
Actions

Difference between revisions of "Invertible module"

From Encyclopedia of Mathematics
Jump to: navigation, search
(Importing text file)
 
m (tex encoded by computer)
Line 1: Line 1:
A [[Module|module]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052490/i0524901.png" /> over a [[Commutative ring|commutative ring]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052490/i0524902.png" /> for which there exists an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052490/i0524903.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052490/i0524904.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052490/i0524905.png" /> is isomorphic to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052490/i0524906.png" /> (as an isomorphism of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052490/i0524907.png" />-modules). A module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052490/i0524908.png" /> is invertible if and only if it is finitely generated, projective and has rank 1 over every prime ideal of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052490/i0524909.png" />. The classes of isomorphic invertible modules form the Picard group of the ring <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052490/i05249010.png" />; the operation in this group is induced by the tensor product of modules, and the identity element is the class of the module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052490/i05249011.png" />. In the non-commutative case, an <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052490/i05249012.png" />-bimodule, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052490/i05249013.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052490/i05249014.png" /> are associative rings, is called invertible if there exists a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052490/i05249016.png" />-bimodule <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052490/i05249017.png" /> such that
+
<!--
 +
i0524901.png
 +
$#A+1 = 18 n = 0
 +
$#C+1 = 18 : ~/encyclopedia/old_files/data/I052/I.0502490 Invertible module
 +
Automatically converted into TeX, above some diagnostics.
 +
Please remove this comment and the {{TEX|auto}} line below,
 +
if TeX found to be correct.
 +
-->
  
<table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052490/i05249018.png" /></td> </tr></table>
+
{{TEX|auto}}
 +
{{TEX|done}}
 +
 
 +
A [[Module|module]]  $  M $
 +
over a [[Commutative ring|commutative ring]]  $  A $
 +
for which there exists an  $  A $-
 +
module  $  N $
 +
such that  $  M \otimes N $
 +
is isomorphic to  $  A $(
 +
as an isomorphism of  $  A $-
 +
modules). A module  $  M $
 +
is invertible if and only if it is finitely generated, projective and has rank 1 over every prime ideal of  $  A $.
 +
The classes of isomorphic invertible modules form the Picard group of the ring  $  A $;  
 +
the operation in this group is induced by the tensor product of modules, and the identity element is the class of the module  $  A $.  
 +
In the non-commutative case, an  $  ( A , B ) $-
 +
bimodule, where  $  A $
 +
and  $  B $
 +
are associative rings, is called invertible if there exists a  $  ( B , A ) $-
 +
bimodule  $  N $
 +
such that
 +
 
 +
$$
 +
M \otimes _ {B} N  \simeq  A \ \
 +
\textrm{ and } \ \
 +
N \otimes _ {A} M  \simeq  B .
 +
$$
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  N. Bourbaki,  "Elements of mathematics. Commutative algebra" , Addison-Wesley  (1972)  (Translated from French)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  C. Faith,  "Algebra: rings, modules, and categories" , '''1''' , Springer  (1973)</TD></TR></table>
 
<table><TR><TD valign="top">[1]</TD> <TD valign="top">  N. Bourbaki,  "Elements of mathematics. Commutative algebra" , Addison-Wesley  (1972)  (Translated from French)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top">  C. Faith,  "Algebra: rings, modules, and categories" , '''1''' , Springer  (1973)</TD></TR></table>
 
 
  
 
====Comments====
 
====Comments====
The Picard group of a non-commutative ring is a useful invariant in the theory of orders and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i052/i052490/i05249019.png" />-modules, cf. [[#References|[a1]]], [[#References|[a2]]].
+
The Picard group of a non-commutative ring is a useful invariant in the theory of orders and $  G $-
 +
modules, cf. [[#References|[a1]]], [[#References|[a2]]].
  
 
====References====
 
====References====
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  A. Fröhlich,  "The Picard group of noncommutative rings, in particular of orders"  ''Proc. London Math. Soc.'' , '''180'''  (1973)  pp. 1–45</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  A. Fröhlich,  I. Reiner,  S. Ullom,  "Class groups and Picard groups of orders"  ''Proc. London Math. Soc.'' , '''180'''  (1973)  pp. 405–434</TD></TR></table>
 
<table><TR><TD valign="top">[a1]</TD> <TD valign="top">  A. Fröhlich,  "The Picard group of noncommutative rings, in particular of orders"  ''Proc. London Math. Soc.'' , '''180'''  (1973)  pp. 1–45</TD></TR><TR><TD valign="top">[a2]</TD> <TD valign="top">  A. Fröhlich,  I. Reiner,  S. Ullom,  "Class groups and Picard groups of orders"  ''Proc. London Math. Soc.'' , '''180'''  (1973)  pp. 405–434</TD></TR></table>

Revision as of 22:13, 5 June 2020


A module $ M $ over a commutative ring $ A $ for which there exists an $ A $- module $ N $ such that $ M \otimes N $ is isomorphic to $ A $( as an isomorphism of $ A $- modules). A module $ M $ is invertible if and only if it is finitely generated, projective and has rank 1 over every prime ideal of $ A $. The classes of isomorphic invertible modules form the Picard group of the ring $ A $; the operation in this group is induced by the tensor product of modules, and the identity element is the class of the module $ A $. In the non-commutative case, an $ ( A , B ) $- bimodule, where $ A $ and $ B $ are associative rings, is called invertible if there exists a $ ( B , A ) $- bimodule $ N $ such that

$$ M \otimes _ {B} N \simeq A \ \ \textrm{ and } \ \ N \otimes _ {A} M \simeq B . $$

References

[1] N. Bourbaki, "Elements of mathematics. Commutative algebra" , Addison-Wesley (1972) (Translated from French)
[2] C. Faith, "Algebra: rings, modules, and categories" , 1 , Springer (1973)

Comments

The Picard group of a non-commutative ring is a useful invariant in the theory of orders and $ G $- modules, cf. [a1], [a2].

References

[a1] A. Fröhlich, "The Picard group of noncommutative rings, in particular of orders" Proc. London Math. Soc. , 180 (1973) pp. 1–45
[a2] A. Fröhlich, I. Reiner, S. Ullom, "Class groups and Picard groups of orders" Proc. London Math. Soc. , 180 (1973) pp. 405–434
How to Cite This Entry:
Invertible module. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Invertible_module&oldid=18662
This article was adapted from an original article by L.V. Kuz'min (originator), which appeared in Encyclopedia of Mathematics - ISBN 1402006098. See original article