|
|
Line 1: |
Line 1: |
− | Obtaining from known properties of an operator in two or more spaces conclusions as to the properties of this operator in spaces that are in a certain sense intermediate. A Banach pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i0519601.png" /> is a pair of Banach spaces (cf. [[Banach space|Banach space]]) that are algebraically and continuously imbedded in a separable [[Linear topological space|linear topological space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i0519602.png" />. One introduces the norm
| + | <!-- |
| + | i0519601.png |
| + | $#A+1 = 212 n = 0 |
| + | $#C+1 = 212 : ~/encyclopedia/old_files/data/I051/I.0501960 Interpolation of operators |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i0519603.png" /></td> </tr></table>
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | on the intersection <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i0519604.png" />; on the arithmetical sum <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i0519605.png" /> the norm
| + | Obtaining from known properties of an operator in two or more spaces conclusions as to the properties of this operator in spaces that are in a certain sense intermediate. A Banach pair $ A , B $ |
| + | is a pair of Banach spaces (cf. [[Banach space|Banach space]]) that are algebraically and continuously imbedded in a separable [[Linear topological space|linear topological space]] $ \mathfrak A $. |
| + | One introduces the norm |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i0519606.png" /></td> </tr></table>
| + | $$ |
| + | \| x \| _ {A \cap B } = \ |
| + | \max \{ \| x \| _ {A} , \| x \| _ {B} \} |
| + | $$ |
| | | |
− | is introduced. The spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i0519607.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i0519608.png" /> are Banach spaces. A Banach space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i0519609.png" /> is said to be intermediate for the pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196010.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196011.png" />.
| + | on the intersection $ A \cap B $; |
| + | on the arithmetical sum $ A + B $ |
| + | the norm |
| | | |
− | A linear mapping <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196012.png" />, acting from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196013.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196014.png" />, is called a bounded operator from the pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196015.png" /> into the pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196016.png" /> if its restriction to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196017.png" /> (respectively, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196018.png" />) is a bounded operator from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196019.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196020.png" /> (respectively, from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196021.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196022.png" />). A triple of spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196023.png" /> is called an interpolation triple relative to the triple <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196024.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196025.png" /> is intermediate for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196026.png" /> (respectively, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196027.png" /> is intermediate for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196028.png" />), if every bounded operator from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196029.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196030.png" /> maps <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196031.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196032.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196033.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196034.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196035.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196036.png" /> is called an interpolation space between <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196037.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196038.png" />. For interpolation triples there exists a constant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196039.png" /> such that | + | $$ |
| + | \| x \| _ {A+} B = \ |
| + | \inf _ {x = u + v } |
| + | \{ \| u \| _ {A} + \| v \| _ {B} \} |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196040.png" /></td> </tr></table>
| + | is introduced. The spaces $ A \cap B $ |
| + | and $ A + B $ |
| + | are Banach spaces. A Banach space $ E $ |
| + | is said to be intermediate for the pair $ A , B $ |
| + | if $ A \cap B \subset E \subset A + B $. |
| | | |
− | The first interpolation theorem was obtained by M. Riesz (1926): The triple <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196041.png" /> is an interpolation triple for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196042.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196043.png" /> and if for a certain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196044.png" />,
| + | A linear mapping $ T $, |
| + | acting from $ A + B $ |
| + | into $ C + D $, |
| + | is called a bounded operator from the pair $ A , B $ |
| + | into the pair $ C , D $ |
| + | if its restriction to $ A $( |
| + | respectively, $ B $) |
| + | is a bounded operator from $ A $ |
| + | into $ C $( |
| + | respectively, from $ B $ |
| + | into $ D $). |
| + | A triple of spaces $ \{ A , B , E \} $ |
| + | is called an interpolation triple relative to the triple $ \{ C , D , F \} $, |
| + | where $ E $ |
| + | is intermediate for $ A , B $( |
| + | respectively, $ F $ |
| + | is intermediate for $ C , D $), |
| + | if every bounded operator from $ A , B $ |
| + | into $ C , D $ |
| + | maps $ E $ |
| + | into $ F $. |
| + | If $ A = C $, |
| + | $ B = D $, |
| + | $ E = F $, |
| + | then $ E $ |
| + | is called an interpolation space between $ A $ |
| + | and $ B $. |
| + | For interpolation triples there exists a constant $ c $ |
| + | such that |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196045.png" /></td> <td valign="top" style="width:5%;text-align:right;">(1)</td></tr></table>
| + | $$ |
| + | \| T \| _ {E \rightarrow F } |
| + | \leq c \max |
| + | \{ \| T \| _ {A \rightarrow C } , \| T \| _ {B \rightarrow D } \} . |
| + | $$ |
| | | |
− | The measures in the listed spaces may be different for each triple. Analogues of these theorems for other classes of families of spaces need not hold; e.g., <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196046.png" /> is not an interpolation space between <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196047.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196048.png" />. | + | The first interpolation theorem was obtained by M. Riesz (1926): The triple $ \{ L _ {p _ {0} } , L _ {p _ {1} } , L _ {p _ \theta } \} $ |
| + | is an interpolation triple for $ \{ L _ {q _ {0} } , L _ {q _ {1} } , L _ {q _ \theta } \} $ |
| + | if $ 1 \leq p _ {0} , p _ {1} , q _ {0} , q _ {1} \leq \infty $ |
| + | and if for a certain $ \theta \in ( 0 , 1 ) $, |
| | | |
− | An interpolation functor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196049.png" /> is a functor that assigns to each Banach pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196050.png" /> an intermediate space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196051.png" />, where, moreover, for any two Banach pairs <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196052.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196053.png" />, the triples <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196054.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196055.png" /> are interpolation for each other. There is a number of methods for constructing interpolation functors. Two of these gained the largest number of applications.
| + | $$ \tag{1 } |
| | | |
− | ==Peetre's <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196056.png" />-method.== | + | \frac{1}{p} _ \theta = |
− | For a Banach pair <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196057.png" /> one constructs the functional
| + | \frac{1 - \theta }{p _ {0} } |
| + | + |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196058.png" /></td> </tr></table>
| + | \frac \theta {p _ {1} } |
| + | ,\ \ |
| | | |
− | which is equivalent to the norm in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196059.png" /> for each <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196060.png" />. A Banach space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196061.png" /> of measurable functions on the semi-axis is called an ideal space if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196062.png" /> almost-everywhere on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196063.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196064.png" /> imply <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196065.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196066.png" />. One considers all elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196067.png" /> from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196068.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196069.png" />. They form the Banach space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196070.png" /> with the norm <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196071.png" />. The space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196072.png" /> is non-empty and is intermediate for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196073.png" /> if and only if the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196074.png" /> belongs to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196075.png" />. In this case <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196076.png" /> is an interpolation functor. For some Banach pairs the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196077.png" /> can be computed. This makes it possible to constructive effectively interpolation spaces. For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196078.png" />:
| + | \frac{1}{q} _ \theta = \ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196079.png" /></td> </tr></table>
| + | \frac{1 - \theta }{q _ {0} } |
| + | + |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196080.png" /> is a non-increasing right-continuous function on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196081.png" /> that is equi-measurable with the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196082.png" />. For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196083.png" />:
| + | \frac \theta {q _ {1} } |
| + | . |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196084.png" /></td> </tr></table>
| + | The measures in the listed spaces may be different for each triple. Analogues of these theorems for other classes of families of spaces need not hold; e.g., $ C ^ {1} ( 0 , 1 ) $ |
| + | is not an interpolation space between $ C ( 0 , 1 ) $ |
| + | and $ C ^ {2} ( 0 , 1 ) $. |
| | | |
− | where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196085.png" /> is the modulus of continuity (cf. [[Continuity, modulus of|Continuity, modulus of]]) of the function <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196086.png" />, and the sign <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196087.png" /> denotes transition to the least convex majorant on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196088.png" />. For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196089.png" /> (a [[Sobolev space|Sobolev space]]),
| + | An interpolation functor $ F $ |
| + | is a functor that assigns to each Banach pair $ A , B $ |
| + | an intermediate space $ F ( A , B ) $, |
| + | where, moreover, for any two Banach pairs $ A , B $ |
| + | and $ C , D $, |
| + | the triples $ \{ A , B , F ( A , B ) \} $ |
| + | and $ \{ C , D , F ( C , D ) \} $ |
| + | are interpolation for each other. There is a number of methods for constructing interpolation functors. Two of these gained the largest number of applications. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196090.png" /></td> </tr></table>
| + | ==Peetre's $ K $-method.== |
| + | For a Banach pair $ A , B $ |
| + | one constructs the functional |
| + | |
| + | $$ |
| + | K ( t , x ) = \ |
| + | \inf _ {x = u + v } |
| + | \{ \| u \| _ {A} + t \| v \| _ {B} \} , |
| + | $$ |
| + | |
| + | which is equivalent to the norm in $ A + B $ |
| + | for each $ t $. |
| + | A Banach space $ G $ |
| + | of measurable functions on the semi-axis is called an ideal space if $ | f( t) | \leq | g ( t) | $ |
| + | almost-everywhere on $ ( 0 , \infty ) $ |
| + | and $ g \in G $ |
| + | imply $ f \in G $ |
| + | and $ \| f \| _ {G} \leq \| g \| _ {G} $. |
| + | One considers all elements $ x $ |
| + | from $ A + B $ |
| + | for which $ K ( t , x ) \in G $. |
| + | They form the Banach space $ ( A , B ) _ {G} ^ {K} $ |
| + | with the norm $ \| x \| _ {( A , B ) _ {G} ^ {K} } = \| K ( t , x ) \| _ {G} $. |
| + | The space $ ( A, B ) _ {G} ^ {K} $ |
| + | is non-empty and is intermediate for $ A , B $ |
| + | if and only if the function $ \min \{ t , 1 \} $ |
| + | belongs to $ G $. |
| + | In this case $ F ( A , B ) = ( A , B ) _ {G} ^ {K} $ |
| + | is an interpolation functor. For some Banach pairs the function $ K ( t , x ) $ |
| + | can be computed. This makes it possible to constructive effectively interpolation spaces. For $ L _ {1} , L _ \infty $: |
| + | |
| + | $$ |
| + | K ( t , x ) = \ |
| + | \int\limits _ { 0 } ^ { 1 } x ^ {*} ( \tau ) d \tau , |
| + | $$ |
| + | |
| + | where $ x ^ {*} ( t) $ |
| + | is a non-increasing right-continuous function on $ ( 0, \infty ) $ |
| + | that is equi-measurable with the function $ x $. |
| + | For $ C , C ^ {1} $: |
| + | |
| + | $$ |
| + | K ( t , x ) = |
| + | \frac{1}{2} |
| + | \widehat \omega ( 2 t , x ) , |
| + | $$ |
| + | |
| + | where $ \omega ( t , x ) $ |
| + | is the modulus of continuity (cf. [[Continuity, modulus of|Continuity, modulus of]]) of the function $ x $, |
| + | and the sign $ \widehat{ {}} $ |
| + | denotes transition to the least convex majorant on $ ( 0 , \infty ) $. |
| + | For $ L _ {p} ( \mathbf R ^ {n} ) , W _ {p} ^ {l} ( \mathbf R ^ {n} ) $( |
| + | a [[Sobolev space|Sobolev space]]), |
| + | |
| + | $$ |
| + | K ( t , x ) = \ |
| + | \left \{ |
| + | \begin{array}{ll} |
| + | \omega _ {l,p} ( t ^ {1/p} , x ) + t \| x \| _ {L _ {p} } , & t < 1 , \\ |
| + | \| x \| _ {L _ {p} } , &t \geq 1 , \\ |
| + | \end{array} |
| + | |
| + | \right .$$ |
| | | |
| where | | where |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196091.png" /></td> </tr></table>
| + | $$ |
| + | \omega _ {l,p} ( t , x ) = \ |
| + | \sup \left \{ { |
| + | \| \Delta _ {h} ^ {l} x ( s) \| _ {L _ {p} } } : { |
| + | | h | \leq t } \right \} |
| + | . |
| + | $$ |
| | | |
| One often takes the space with norm | | One often takes the space with norm |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196092.png" /></td> </tr></table>
| + | $$ |
| + | \| f \| _ {G} = \ |
| + | \left \{ |
| + | \int\limits _ { 0 } ^ \infty |
| + | t ^ {- \theta } | f ( t) | ^ {q} |
| + | \frac{dt}{t} |
| | | |
− | as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196093.png" />. The corresponding functor is denoted by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196094.png" />. The Besov spaces
| + | \right \} ^ {1/q} ,\ \ |
| + | 0 < \theta < 1 ,\ \ |
| + | 1 \leq q \leq \infty , |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196095.png" /></td> </tr></table>
| + | as $ G $. |
| + | The corresponding functor is denoted by $ ( A , B ) _ {\theta , p } ^ {K} $. |
| + | The Besov spaces |
| | | |
− | with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196096.png" /> play an important role in the theory of partial differential equations. A number of classical inequalities in analysis can be made more precise in terms of the Lorentz spaces
| + | $$ |
| + | B _ {p,q} ^ {m} = ( L _ {p} , W _ {p} ^ {l} ) _ {\theta , q } ^ {K} |
| + | $$ |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196097.png" /></td> </tr></table>
| + | with $ m = \theta l $ |
| + | play an important role in the theory of partial differential equations. A number of classical inequalities in analysis can be made more precise in terms of the Lorentz spaces |
| + | |
| + | $$ |
| + | L _ {r,q} = ( L _ {1} , L _ \infty ) _ {\theta , q } ^ {K } ,\ \ |
| + | r = |
| + | \frac{1}{1 - \theta } |
| + | . |
| + | $$ |
| | | |
| ==The complex method of Calderón–Lions.== | | ==The complex method of Calderón–Lions.== |
− | Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196098.png" /> be a Banach pair. Denote by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i05196099.png" /> the space of all functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960100.png" /> defined in the strip <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960101.png" /> of the complex plane, with values in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960102.png" />, and having the following properties: 1) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960103.png" /> is continuous and bounded on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960104.png" /> in the norm of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960105.png" />; 2) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960106.png" /> is analytic inside <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960107.png" /> in the norm of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960108.png" />; 3) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960109.png" /> is continuous and bounded in the norm of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960110.png" />; and 4) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960111.png" /> is continuous and bounded in the norm of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960112.png" />. The space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960113.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960114.png" />, is defined as the set of all elements <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960115.png" /> that can be represented as <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960116.png" /> for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960117.png" />. In it one introduces the norm | + | Let $ A , B $ |
| + | be a Banach pair. Denote by $ \Phi ( A , B ) $ |
| + | the space of all functions $ \phi ( z) $ |
| + | defined in the strip $ \Pi = \{ {z } : {0 \leq \mathop{\rm Re} z \leq 1 } \} $ |
| + | of the complex plane, with values in $ A + B $, |
| + | and having the following properties: 1) $ \phi ( z) $ |
| + | is continuous and bounded on $ \Pi $ |
| + | in the norm of $ A + B $; |
| + | 2) $ \phi ( z) $ |
| + | is analytic inside $ \Pi $ |
| + | in the norm of $ A + B $; |
| + | 3) $ \phi ( i \tau ) $ |
| + | is continuous and bounded in the norm of $ A $; |
| + | and 4) $ \phi ( 1 + i \tau ) $ |
| + | is continuous and bounded in the norm of $ B $. |
| + | The space $ [ A , B ] _ \alpha $, |
| + | $ 0 \leq \alpha \leq 1 $, |
| + | is defined as the set of all elements $ x \in A + B $ |
| + | that can be represented as $ x = \phi ( \alpha ) $ |
| + | for $ \phi \in \Phi ( A , B ) $. |
| + | In it one introduces the norm |
| + | |
| + | $$ |
| + | \| x \| _ {[ A , B ] _ \alpha } |
| + | = \inf _ {\phi ( \alpha ) = x } \ |
| + | \| \phi \| _ {\Phi ( A , B ) } . |
| + | $$ |
| + | |
| + | In this way the interpolation functor $ [ A , B ] _ \alpha $ |
| + | is defined. If $ A = L _ {p _ {0} } , B = L _ {p _ {1} } $, |
| + | $ p _ {0} , p _ {1} \leq \infty $, |
| + | then $ [ L _ {p _ {0} } , L _ {p _ {1} } ] _ \alpha = L _ {p} $ |
| + | with $ 1/p = ( 1 - \alpha ) / p _ {0} + \alpha / p _ {1} $. |
| + | If $ G _ {0} $ |
| + | and $ G _ {1} $ |
| + | are two ideal spaces and if in at least one of them the norm is absolutely continuous, then $ [ G _ {0} , G _ {1} ] _ \alpha $ |
| + | consists of all functions $ x ( t) $ |
| + | for which $ | x ( t) | = | x _ {0} ( t) | ^ {1 - \alpha } | x _ {1} ( t) | ^ \alpha $ |
| + | for some $ x _ {0} \in G _ {0} $, |
| + | $ x _ {1} \in G _ {1} $. |
| + | If $ H _ {0} , H _ {1} $ |
| + | are two complex Hilbert spaces with $ H _ {1} \subset H _ {0} $, |
| + | then $ [ H _ {0} , H _ {1} ] _ \epsilon $ |
| + | is a family of spaces that have very important applications. It is called a Hilbert scale. If $ H _ {0} = L _ {2} $, |
| + | $ H _ {2} = W _ {2} ^ {l} $, |
| + | then $ [ H _ {0} , H _ {1} ] _ \alpha = W _ {2} ^ {\alpha l } $( |
| + | a Sobolev space of fractional index). For other methods of constructing interpolation functors, as well as on their relation to the theory of scales of Banach spaces, see [[#References|[1]]], [[#References|[3]]], [[#References|[5]]], [[#References|[8]]], [[#References|[9]]]. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960118.png" /></td> </tr></table>
| + | In the theory of interpolation of operators, Marcinkiewicz' interpolation theorem on interpolation operators of weak type plays an important role. An operator $ T $ |
| + | from a Banach space $ A $ |
| + | into a space of measurable functions, e.g. on the semi-axis, is called an operator of weak type $ ( A , \psi ) $ |
| + | if $ ( T x ) ^ {*} ( t) \leq ( c / \psi ( t) ) \| x \| _ {A} $. |
| + | It is assumed here that $ \psi ( t) $ |
| + | and $ t / \psi ( t) $ |
| + | are non-decreasing functions (e.g. $ \psi ( t) = t ^ \alpha $, |
| + | $ 0 \leq \alpha \leq 1 $). |
| + | Theorems of Marcinkiewicz type enable one to describe for operators $ T $ |
| + | of weak types $ ( A _ {0} , \psi _ {0} ) $ |
| + | and $ ( A _ {1} , \psi _ {1} ) $ |
| + | simultaneously (where $ A _ {0} , A _ {1} $ |
| + | is a Banach pair) the pairs of spaces $ A , E $ |
| + | for which $ T A \subset E $. |
| + | In many cases it is sufficient to check that the operator |
| | | |
− | In this way the interpolation functor <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960119.png" /> is defined. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960120.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960121.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960122.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960123.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960124.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960125.png" /> are two ideal spaces and if in at least one of them the norm is absolutely continuous, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960126.png" /> consists of all functions <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960127.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960128.png" /> for some <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960129.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960130.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960131.png" /> are two complex Hilbert spaces with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960132.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960133.png" /> is a family of spaces that have very important applications. It is called a Hilbert scale. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960134.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960135.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960136.png" /> (a Sobolev space of fractional index). For other methods of constructing interpolation functors, as well as on their relation to the theory of scales of Banach spaces, see [[#References|[1]]], [[#References|[3]]], [[#References|[5]]], [[#References|[8]]], [[#References|[9]]].
| + | $$ |
| | | |
− | In the theory of interpolation of operators, Marcinkiewicz' interpolation theorem on interpolation operators of weak type plays an important role. An operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960137.png" /> from a Banach space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960138.png" /> into a space of measurable functions, e.g. on the semi-axis, is called an operator of weak type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960140.png" /> if <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960141.png" />. It is assumed here that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960142.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960143.png" /> are non-decreasing functions (e.g. <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960144.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960145.png" />). Theorems of Marcinkiewicz type enable one to describe for operators <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960146.png" /> of weak types <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960147.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960148.png" /> simultaneously (where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960149.png" /> is a Banach pair) the pairs of spaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960150.png" /> for which <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960151.png" />. In many cases it is sufficient to check that the operator
| + | \frac{1}{\psi _ {0} ( t) } |
| + | K |
| + | \left ( |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960152.png" /></td> </tr></table>
| + | \frac{\psi _ {0} ( t) }{\psi _ {1} ( t) } |
| + | , x \right ) |
| + | $$ |
| | | |
− | (where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960153.png" /> is the Peetre functional for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960154.png" />) acts from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960155.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960156.png" />. If for all linear operators of weak types <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960157.png" /> it has been shown that this functional acts from <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960158.png" /> into <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960159.png" />, then this also holds for quasi-additive operators (i.e. with the property <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960160.png" />) of weak types <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960161.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960162.png" />. Many important operators in analysis (e.g. Hilbert's singular operator) are of weak types in natural spaces; hence the corresponding interpolation theorems have found numerous applications. | + | (where $ K ( t , x ) $ |
| + | is the Peetre functional for $ A _ {0} , A _ {1} $) |
| + | acts from $ A $ |
| + | into $ E $. |
| + | If for all linear operators of weak types $ ( A _ {i} , \psi _ {i} ) $ |
| + | it has been shown that this functional acts from $ A $ |
| + | into $ E $, |
| + | then this also holds for quasi-additive operators (i.e. with the property $ | T ( x + y ) ( t) | \leq b ( | T x ( t) | + | T y ( t) | ) $) |
| + | of weak types $ ( A _ {i} , \psi _ {i} ) $, |
| + | $ i = 0 , 1 $. |
| + | Many important operators in analysis (e.g. Hilbert's singular operator) are of weak types in natural spaces; hence the corresponding interpolation theorems have found numerous applications. |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[1]</TD> <TD valign="top"> P. Butzer, H. Berens, "Semi-groups of operators and approximation" , Springer (1967)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Zygmund, "Trigonometric series" , '''2''' , Cambridge Univ. Press (1988)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> S.G. Krein, Yu.I. Petunin, E.M. Semenov, "Interpolation of linear operators" , Amer. Math. Soc. (1982) (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> J.L. Lions, E. Magenes, "Non-homogenous boundary value problems and applications" , '''1–2''' , Springer (1972) (Translated from French)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> E. Magenes, "Spazi di interpolazione ed equazioni a derivate parziali" , ''Conf. VII Congr. Union Mat. Italy, 1963'' , Cremonese (1965) pp. 134–197</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> E.M. Stein, G. Weiss, "Introduction to Fourier analysis on Euclidean spaces" , Princeton Univ. Press (1971)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> N.Ya. Vilenkin (ed.) et al. (ed.) , ''Functional analysis'' , Wolters-Noordhoff (1972) (Translated from Russian)</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> J. Bergh, B.I. Löfström, "Interpolation spaces" , Springer (1976)</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top"> H. Triebel, "Interpolation theory, function spaces, differential operators" , North-Holland (1978)</TD></TR></table> | | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> P. Butzer, H. Berens, "Semi-groups of operators and approximation" , Springer (1967)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> A. Zygmund, "Trigonometric series" , '''2''' , Cambridge Univ. Press (1988)</TD></TR><TR><TD valign="top">[3]</TD> <TD valign="top"> S.G. Krein, Yu.I. Petunin, E.M. Semenov, "Interpolation of linear operators" , Amer. Math. Soc. (1982) (Translated from Russian)</TD></TR><TR><TD valign="top">[4]</TD> <TD valign="top"> J.L. Lions, E. Magenes, "Non-homogenous boundary value problems and applications" , '''1–2''' , Springer (1972) (Translated from French)</TD></TR><TR><TD valign="top">[5]</TD> <TD valign="top"> E. Magenes, "Spazi di interpolazione ed equazioni a derivate parziali" , ''Conf. VII Congr. Union Mat. Italy, 1963'' , Cremonese (1965) pp. 134–197</TD></TR><TR><TD valign="top">[6]</TD> <TD valign="top"> E.M. Stein, G. Weiss, "Introduction to Fourier analysis on Euclidean spaces" , Princeton Univ. Press (1971)</TD></TR><TR><TD valign="top">[7]</TD> <TD valign="top"> N.Ya. Vilenkin (ed.) et al. (ed.) , ''Functional analysis'' , Wolters-Noordhoff (1972) (Translated from Russian)</TD></TR><TR><TD valign="top">[8]</TD> <TD valign="top"> J. Bergh, B.I. Löfström, "Interpolation spaces" , Springer (1976)</TD></TR><TR><TD valign="top">[9]</TD> <TD valign="top"> H. Triebel, "Interpolation theory, function spaces, differential operators" , North-Holland (1978)</TD></TR></table> |
− |
| |
− |
| |
| | | |
| ====Comments==== | | ====Comments==== |
− | The theorem of M. Riesz mentioned in the main article is often called the M. Riesz convexity theorem. It has a somewhat more precise statement as follows (involving a bound on a certain norm for the bounded operator in question). Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960163.png" /> be a linear operator mapping a linear space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960164.png" /> of complex-valued measurable functions on a [[Measure space|measure space]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960165.png" /> into measurable functions on another measure space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960166.png" />. Assume <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960167.png" /> contains all indicator functions of measurable sets and is such that whenever <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960168.png" />, then also all truncations (i.e. functions which coincide with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960169.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960170.png" /> for certain <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960171.png" /> and vanish elsewhere) belong to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960172.png" />. The operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960173.png" /> is said to be of type (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960175.png" />) if there is a constant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960176.png" /> such that | + | The theorem of M. Riesz mentioned in the main article is often called the M. Riesz convexity theorem. It has a somewhat more precise statement as follows (involving a bound on a certain norm for the bounded operator in question). Let $ T $ |
| + | be a linear operator mapping a linear space $ D $ |
| + | of complex-valued measurable functions on a [[Measure space|measure space]] $ ( M , {\mathcal M} , \mu ) $ |
| + | into measurable functions on another measure space $ ( N , {\mathcal N} , \nu ) $. |
| + | Assume $ D $ |
| + | contains all indicator functions of measurable sets and is such that whenever $ f \in D $, |
| + | then also all truncations (i.e. functions which coincide with $ f $ |
| + | in $ c _ {1} < | f ( x) | \leq c _ {2} $ |
| + | for certain $ c _ {1} , c _ {2} > 0 $ |
| + | and vanish elsewhere) belong to $ D $. |
| + | The operator $ T $ |
| + | is said to be of type ( $ p , q $) |
| + | if there is a constant $ C $ |
| + | such that |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960177.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a1)</td></tr></table>
| + | $$ \tag{a1 } |
| + | \| T f \| _ {L _ {q} ( N) } \leq \ |
| + | C \| f \| _ {L _ {p} ( M) } \ \ |
| + | \textrm{ for all } f \in D \cap L _ {p} ( M) . |
| + | $$ |
| | | |
− | The least <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960178.png" /> for which (a1) holds is called the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960180.png" />-norm of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960181.png" />. The M. Riesz convexity theorem now states: If a linear operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960182.png" /> is of types <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960183.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960184.png" />-norms <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960185.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960186.png" />, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960187.png" /> is of type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960188.png" /> with <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960189.png" />-norm <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960190.png" />, provided <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960191.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960192.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960193.png" /> satisfy (1). (The name "convexity theorem" derives from the fact that the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960194.png" />-norm of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960195.png" />, as a function of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960196.png" />, is logarithmically convex.) | + | The least $ C $ |
| + | for which (a1) holds is called the $ ( p , q ) $- |
| + | norm of $ T $. |
| + | The M. Riesz convexity theorem now states: If a linear operator $ T $ |
| + | is of types $ ( p _ {i} , q _ {i} ) $ |
| + | with $ ( p _ {i} , q _ {i} ) $- |
| + | norms $ k _ {i} $, |
| + | $ i = 0 , 1 $, |
| + | then $ T $ |
| + | is of type $ ( p _ \theta , q _ \theta ) $ |
| + | with $ ( p _ \theta , q _ \theta ) $- |
| + | norm $ k _ \theta \leq k _ {0} ^ {1 - \theta } k _ {1} ^ \theta $, |
| + | provided $ 0 \leq \theta \leq 1 $ |
| + | and $ p _ \theta $, |
| + | $ q _ \theta $ |
| + | satisfy (1). (The name "convexity theorem" derives from the fact that the $ ( p _ \theta , q _ \theta ) $- |
| + | norm of $ T $, |
| + | as a function of $ \theta $, |
| + | is logarithmically convex.) |
| | | |
− | In the same setting, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960197.png" /> is called subadditive if | + | In the same setting, $ T $ |
| + | is called subadditive if |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960198.png" /></td> </tr></table>
| + | $$ |
| + | | ( T ( f _ {1} + f _ {2} ) ) ( x) | \leq \ |
| + | | ( T f _ {1} ) ( x) | + |
| + | | ( T f _ {2} ) ( x) | |
| + | $$ |
| | | |
− | for almost-all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960199.png" /> and for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960200.png" />. A subadditive operator <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960201.png" /> is said to be of weak type (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960203.png" />) (where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960204.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960205.png" />) if there is a constant <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960206.png" /> such that | + | for almost-all $ x \in N $ |
| + | and for $ f _ {1} , f _ {2} \in D $. |
| + | A subadditive operator $ T $ |
| + | is said to be of weak type ( $ p , q $) |
| + | (where $ 1 \leq p \leq \infty $, |
| + | $ 1\leq q < \infty $) |
| + | if there is a constant $ k $ |
| + | such that |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960207.png" /></td> <td valign="top" style="width:5%;text-align:right;">(a2)</td></tr></table>
| + | $$ \tag{a2 } |
| + | \nu ( \{ {x \in N } : {| ( T f ) ( x) | > s } \} |
| + | ) \leq \ |
| + | \left ( |
| + | \frac{k \| f \| _ {L _ {p} } }{s} |
| + | \right ) ^ {q} |
| + | $$ |
| | | |
− | for all <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960208.png" />. The least <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960209.png" /> for which (a2) holds is called the weak (<img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960211.png" />)-norm of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960212.png" />. (Note that the left-hand side of (a2) is the so-called distribution function of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960213.png" />.) For <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960214.png" />, (a2) must be replaced by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960215.png" />. | + | for all $ f \in L _ {p} ( M) \cap D $. |
| + | The least $ k $ |
| + | for which (a2) holds is called the weak ( $ p , q $)- |
| + | norm of $ T $. |
| + | (Note that the left-hand side of (a2) is the so-called distribution function of $ T f $.) |
| + | For $ q = \infty $, |
| + | (a2) must be replaced by $ \| T f \| _ {L _ {q} } \leq k \| f \| _ {L _ {p} } $. |
| | | |
− | A still further generalization is that of an operator of restricted weak type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960217.png" />, cf. [[#References|[6]]]. | + | A still further generalization is that of an operator of restricted weak type $ ( p , q ) $, |
| + | cf. [[#References|[6]]]. |
| | | |
− | Singular integral operators (cf. [[Singular integral|Singular integral]]) often prove to be of some (weak) type (e.g. the [[Hilbert transform|Hilbert transform]] is of weak type <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i051/i051960/i051960218.png" />). | + | Singular integral operators (cf. [[Singular integral|Singular integral]]) often prove to be of some (weak) type (e.g. the [[Hilbert transform|Hilbert transform]] is of weak type $ ( 1 , 1 ) $). |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> C. Bennett, R.C. Sharpley, "Interpolation of operators" , Acad. Press (1988)</TD></TR></table> | | <table><TR><TD valign="top">[a1]</TD> <TD valign="top"> C. Bennett, R.C. Sharpley, "Interpolation of operators" , Acad. Press (1988)</TD></TR></table> |
Obtaining from known properties of an operator in two or more spaces conclusions as to the properties of this operator in spaces that are in a certain sense intermediate. A Banach pair $ A , B $
is a pair of Banach spaces (cf. Banach space) that are algebraically and continuously imbedded in a separable linear topological space $ \mathfrak A $.
One introduces the norm
$$
\| x \| _ {A \cap B } = \
\max \{ \| x \| _ {A} , \| x \| _ {B} \}
$$
on the intersection $ A \cap B $;
on the arithmetical sum $ A + B $
the norm
$$
\| x \| _ {A+} B = \
\inf _ {x = u + v }
\{ \| u \| _ {A} + \| v \| _ {B} \}
$$
is introduced. The spaces $ A \cap B $
and $ A + B $
are Banach spaces. A Banach space $ E $
is said to be intermediate for the pair $ A , B $
if $ A \cap B \subset E \subset A + B $.
A linear mapping $ T $,
acting from $ A + B $
into $ C + D $,
is called a bounded operator from the pair $ A , B $
into the pair $ C , D $
if its restriction to $ A $(
respectively, $ B $)
is a bounded operator from $ A $
into $ C $(
respectively, from $ B $
into $ D $).
A triple of spaces $ \{ A , B , E \} $
is called an interpolation triple relative to the triple $ \{ C , D , F \} $,
where $ E $
is intermediate for $ A , B $(
respectively, $ F $
is intermediate for $ C , D $),
if every bounded operator from $ A , B $
into $ C , D $
maps $ E $
into $ F $.
If $ A = C $,
$ B = D $,
$ E = F $,
then $ E $
is called an interpolation space between $ A $
and $ B $.
For interpolation triples there exists a constant $ c $
such that
$$
\| T \| _ {E \rightarrow F }
\leq c \max
\{ \| T \| _ {A \rightarrow C } , \| T \| _ {B \rightarrow D } \} .
$$
The first interpolation theorem was obtained by M. Riesz (1926): The triple $ \{ L _ {p _ {0} } , L _ {p _ {1} } , L _ {p _ \theta } \} $
is an interpolation triple for $ \{ L _ {q _ {0} } , L _ {q _ {1} } , L _ {q _ \theta } \} $
if $ 1 \leq p _ {0} , p _ {1} , q _ {0} , q _ {1} \leq \infty $
and if for a certain $ \theta \in ( 0 , 1 ) $,
$$ \tag{1 }
\frac{1}{p} _ \theta =
\frac{1 - \theta }{p _ {0} }
+
\frac \theta {p _ {1} }
,\ \
\frac{1}{q} _ \theta = \
\frac{1 - \theta }{q _ {0} }
+
\frac \theta {q _ {1} }
.
$$
The measures in the listed spaces may be different for each triple. Analogues of these theorems for other classes of families of spaces need not hold; e.g., $ C ^ {1} ( 0 , 1 ) $
is not an interpolation space between $ C ( 0 , 1 ) $
and $ C ^ {2} ( 0 , 1 ) $.
An interpolation functor $ F $
is a functor that assigns to each Banach pair $ A , B $
an intermediate space $ F ( A , B ) $,
where, moreover, for any two Banach pairs $ A , B $
and $ C , D $,
the triples $ \{ A , B , F ( A , B ) \} $
and $ \{ C , D , F ( C , D ) \} $
are interpolation for each other. There is a number of methods for constructing interpolation functors. Two of these gained the largest number of applications.
Peetre's $ K $-method.
For a Banach pair $ A , B $
one constructs the functional
$$
K ( t , x ) = \
\inf _ {x = u + v }
\{ \| u \| _ {A} + t \| v \| _ {B} \} ,
$$
which is equivalent to the norm in $ A + B $
for each $ t $.
A Banach space $ G $
of measurable functions on the semi-axis is called an ideal space if $ | f( t) | \leq | g ( t) | $
almost-everywhere on $ ( 0 , \infty ) $
and $ g \in G $
imply $ f \in G $
and $ \| f \| _ {G} \leq \| g \| _ {G} $.
One considers all elements $ x $
from $ A + B $
for which $ K ( t , x ) \in G $.
They form the Banach space $ ( A , B ) _ {G} ^ {K} $
with the norm $ \| x \| _ {( A , B ) _ {G} ^ {K} } = \| K ( t , x ) \| _ {G} $.
The space $ ( A, B ) _ {G} ^ {K} $
is non-empty and is intermediate for $ A , B $
if and only if the function $ \min \{ t , 1 \} $
belongs to $ G $.
In this case $ F ( A , B ) = ( A , B ) _ {G} ^ {K} $
is an interpolation functor. For some Banach pairs the function $ K ( t , x ) $
can be computed. This makes it possible to constructive effectively interpolation spaces. For $ L _ {1} , L _ \infty $:
$$
K ( t , x ) = \
\int\limits _ { 0 } ^ { 1 } x ^ {*} ( \tau ) d \tau ,
$$
where $ x ^ {*} ( t) $
is a non-increasing right-continuous function on $ ( 0, \infty ) $
that is equi-measurable with the function $ x $.
For $ C , C ^ {1} $:
$$
K ( t , x ) =
\frac{1}{2}
\widehat \omega ( 2 t , x ) ,
$$
where $ \omega ( t , x ) $
is the modulus of continuity (cf. Continuity, modulus of) of the function $ x $,
and the sign $ \widehat{ {}} $
denotes transition to the least convex majorant on $ ( 0 , \infty ) $.
For $ L _ {p} ( \mathbf R ^ {n} ) , W _ {p} ^ {l} ( \mathbf R ^ {n} ) $(
a Sobolev space),
$$
K ( t , x ) = \
\left \{
\begin{array}{ll}
\omega _ {l,p} ( t ^ {1/p} , x ) + t \| x \| _ {L _ {p} } , & t < 1 , \\
\| x \| _ {L _ {p} } , &t \geq 1 , \\
\end{array}
\right .$$
where
$$
\omega _ {l,p} ( t , x ) = \
\sup \left \{ {
\| \Delta _ {h} ^ {l} x ( s) \| _ {L _ {p} } } : {
| h | \leq t } \right \}
.
$$
One often takes the space with norm
$$
\| f \| _ {G} = \
\left \{
\int\limits _ { 0 } ^ \infty
t ^ {- \theta } | f ( t) | ^ {q}
\frac{dt}{t}
\right \} ^ {1/q} ,\ \
0 < \theta < 1 ,\ \
1 \leq q \leq \infty ,
$$
as $ G $.
The corresponding functor is denoted by $ ( A , B ) _ {\theta , p } ^ {K} $.
The Besov spaces
$$
B _ {p,q} ^ {m} = ( L _ {p} , W _ {p} ^ {l} ) _ {\theta , q } ^ {K}
$$
with $ m = \theta l $
play an important role in the theory of partial differential equations. A number of classical inequalities in analysis can be made more precise in terms of the Lorentz spaces
$$
L _ {r,q} = ( L _ {1} , L _ \infty ) _ {\theta , q } ^ {K } ,\ \
r =
\frac{1}{1 - \theta }
.
$$
The complex method of Calderón–Lions.
Let $ A , B $
be a Banach pair. Denote by $ \Phi ( A , B ) $
the space of all functions $ \phi ( z) $
defined in the strip $ \Pi = \{ {z } : {0 \leq \mathop{\rm Re} z \leq 1 } \} $
of the complex plane, with values in $ A + B $,
and having the following properties: 1) $ \phi ( z) $
is continuous and bounded on $ \Pi $
in the norm of $ A + B $;
2) $ \phi ( z) $
is analytic inside $ \Pi $
in the norm of $ A + B $;
3) $ \phi ( i \tau ) $
is continuous and bounded in the norm of $ A $;
and 4) $ \phi ( 1 + i \tau ) $
is continuous and bounded in the norm of $ B $.
The space $ [ A , B ] _ \alpha $,
$ 0 \leq \alpha \leq 1 $,
is defined as the set of all elements $ x \in A + B $
that can be represented as $ x = \phi ( \alpha ) $
for $ \phi \in \Phi ( A , B ) $.
In it one introduces the norm
$$
\| x \| _ {[ A , B ] _ \alpha }
= \inf _ {\phi ( \alpha ) = x } \
\| \phi \| _ {\Phi ( A , B ) } .
$$
In this way the interpolation functor $ [ A , B ] _ \alpha $
is defined. If $ A = L _ {p _ {0} } , B = L _ {p _ {1} } $,
$ p _ {0} , p _ {1} \leq \infty $,
then $ [ L _ {p _ {0} } , L _ {p _ {1} } ] _ \alpha = L _ {p} $
with $ 1/p = ( 1 - \alpha ) / p _ {0} + \alpha / p _ {1} $.
If $ G _ {0} $
and $ G _ {1} $
are two ideal spaces and if in at least one of them the norm is absolutely continuous, then $ [ G _ {0} , G _ {1} ] _ \alpha $
consists of all functions $ x ( t) $
for which $ | x ( t) | = | x _ {0} ( t) | ^ {1 - \alpha } | x _ {1} ( t) | ^ \alpha $
for some $ x _ {0} \in G _ {0} $,
$ x _ {1} \in G _ {1} $.
If $ H _ {0} , H _ {1} $
are two complex Hilbert spaces with $ H _ {1} \subset H _ {0} $,
then $ [ H _ {0} , H _ {1} ] _ \epsilon $
is a family of spaces that have very important applications. It is called a Hilbert scale. If $ H _ {0} = L _ {2} $,
$ H _ {2} = W _ {2} ^ {l} $,
then $ [ H _ {0} , H _ {1} ] _ \alpha = W _ {2} ^ {\alpha l } $(
a Sobolev space of fractional index). For other methods of constructing interpolation functors, as well as on their relation to the theory of scales of Banach spaces, see [1], [3], [5], [8], [9].
In the theory of interpolation of operators, Marcinkiewicz' interpolation theorem on interpolation operators of weak type plays an important role. An operator $ T $
from a Banach space $ A $
into a space of measurable functions, e.g. on the semi-axis, is called an operator of weak type $ ( A , \psi ) $
if $ ( T x ) ^ {*} ( t) \leq ( c / \psi ( t) ) \| x \| _ {A} $.
It is assumed here that $ \psi ( t) $
and $ t / \psi ( t) $
are non-decreasing functions (e.g. $ \psi ( t) = t ^ \alpha $,
$ 0 \leq \alpha \leq 1 $).
Theorems of Marcinkiewicz type enable one to describe for operators $ T $
of weak types $ ( A _ {0} , \psi _ {0} ) $
and $ ( A _ {1} , \psi _ {1} ) $
simultaneously (where $ A _ {0} , A _ {1} $
is a Banach pair) the pairs of spaces $ A , E $
for which $ T A \subset E $.
In many cases it is sufficient to check that the operator
$$
\frac{1}{\psi _ {0} ( t) }
K
\left (
\frac{\psi _ {0} ( t) }{\psi _ {1} ( t) }
, x \right )
$$
(where $ K ( t , x ) $
is the Peetre functional for $ A _ {0} , A _ {1} $)
acts from $ A $
into $ E $.
If for all linear operators of weak types $ ( A _ {i} , \psi _ {i} ) $
it has been shown that this functional acts from $ A $
into $ E $,
then this also holds for quasi-additive operators (i.e. with the property $ | T ( x + y ) ( t) | \leq b ( | T x ( t) | + | T y ( t) | ) $)
of weak types $ ( A _ {i} , \psi _ {i} ) $,
$ i = 0 , 1 $.
Many important operators in analysis (e.g. Hilbert's singular operator) are of weak types in natural spaces; hence the corresponding interpolation theorems have found numerous applications.
References
[1] | P. Butzer, H. Berens, "Semi-groups of operators and approximation" , Springer (1967) |
[2] | A. Zygmund, "Trigonometric series" , 2 , Cambridge Univ. Press (1988) |
[3] | S.G. Krein, Yu.I. Petunin, E.M. Semenov, "Interpolation of linear operators" , Amer. Math. Soc. (1982) (Translated from Russian) |
[4] | J.L. Lions, E. Magenes, "Non-homogenous boundary value problems and applications" , 1–2 , Springer (1972) (Translated from French) |
[5] | E. Magenes, "Spazi di interpolazione ed equazioni a derivate parziali" , Conf. VII Congr. Union Mat. Italy, 1963 , Cremonese (1965) pp. 134–197 |
[6] | E.M. Stein, G. Weiss, "Introduction to Fourier analysis on Euclidean spaces" , Princeton Univ. Press (1971) |
[7] | N.Ya. Vilenkin (ed.) et al. (ed.) , Functional analysis , Wolters-Noordhoff (1972) (Translated from Russian) |
[8] | J. Bergh, B.I. Löfström, "Interpolation spaces" , Springer (1976) |
[9] | H. Triebel, "Interpolation theory, function spaces, differential operators" , North-Holland (1978) |
The theorem of M. Riesz mentioned in the main article is often called the M. Riesz convexity theorem. It has a somewhat more precise statement as follows (involving a bound on a certain norm for the bounded operator in question). Let $ T $
be a linear operator mapping a linear space $ D $
of complex-valued measurable functions on a measure space $ ( M , {\mathcal M} , \mu ) $
into measurable functions on another measure space $ ( N , {\mathcal N} , \nu ) $.
Assume $ D $
contains all indicator functions of measurable sets and is such that whenever $ f \in D $,
then also all truncations (i.e. functions which coincide with $ f $
in $ c _ {1} < | f ( x) | \leq c _ {2} $
for certain $ c _ {1} , c _ {2} > 0 $
and vanish elsewhere) belong to $ D $.
The operator $ T $
is said to be of type ( $ p , q $)
if there is a constant $ C $
such that
$$ \tag{a1 }
\| T f \| _ {L _ {q} ( N) } \leq \
C \| f \| _ {L _ {p} ( M) } \ \
\textrm{ for all } f \in D \cap L _ {p} ( M) .
$$
The least $ C $
for which (a1) holds is called the $ ( p , q ) $-
norm of $ T $.
The M. Riesz convexity theorem now states: If a linear operator $ T $
is of types $ ( p _ {i} , q _ {i} ) $
with $ ( p _ {i} , q _ {i} ) $-
norms $ k _ {i} $,
$ i = 0 , 1 $,
then $ T $
is of type $ ( p _ \theta , q _ \theta ) $
with $ ( p _ \theta , q _ \theta ) $-
norm $ k _ \theta \leq k _ {0} ^ {1 - \theta } k _ {1} ^ \theta $,
provided $ 0 \leq \theta \leq 1 $
and $ p _ \theta $,
$ q _ \theta $
satisfy (1). (The name "convexity theorem" derives from the fact that the $ ( p _ \theta , q _ \theta ) $-
norm of $ T $,
as a function of $ \theta $,
is logarithmically convex.)
In the same setting, $ T $
is called subadditive if
$$
| ( T ( f _ {1} + f _ {2} ) ) ( x) | \leq \
| ( T f _ {1} ) ( x) | +
| ( T f _ {2} ) ( x) |
$$
for almost-all $ x \in N $
and for $ f _ {1} , f _ {2} \in D $.
A subadditive operator $ T $
is said to be of weak type ( $ p , q $)
(where $ 1 \leq p \leq \infty $,
$ 1\leq q < \infty $)
if there is a constant $ k $
such that
$$ \tag{a2 }
\nu ( \{ {x \in N } : {| ( T f ) ( x) | > s } \}
) \leq \
\left (
\frac{k \| f \| _ {L _ {p} } }{s}
\right ) ^ {q}
$$
for all $ f \in L _ {p} ( M) \cap D $.
The least $ k $
for which (a2) holds is called the weak ( $ p , q $)-
norm of $ T $.
(Note that the left-hand side of (a2) is the so-called distribution function of $ T f $.)
For $ q = \infty $,
(a2) must be replaced by $ \| T f \| _ {L _ {q} } \leq k \| f \| _ {L _ {p} } $.
A still further generalization is that of an operator of restricted weak type $ ( p , q ) $,
cf. [6].
Singular integral operators (cf. Singular integral) often prove to be of some (weak) type (e.g. the Hilbert transform is of weak type $ ( 1 , 1 ) $).
References
[a1] | C. Bennett, R.C. Sharpley, "Interpolation of operators" , Acad. Press (1988) |