|
|
Line 1: |
Line 1: |
− | A group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i0503501.png" /> of one-to-one mappings (permutations, cf. [[Permutation|Permutation]]) of a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i0503502.png" /> onto itself, for which there exists a partition of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i0503503.png" /> into a union of disjoint subsets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i0503504.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i0503505.png" />, with the following properties: the number of elements in at least one of the sets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i0503506.png" /> is greater than <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i0503507.png" />; for any permutation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i0503508.png" /> and any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i0503509.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035010.png" />, there exists a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035011.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035012.png" />, such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035013.png" /> maps <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035014.png" /> onto <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035015.png" />.
| + | <!-- |
| + | i0503501.png |
| + | $#A+1 = 104 n = 0 |
| + | $#C+1 = 104 : ~/encyclopedia/old_files/data/I050/I.0500350 Imprimitive group |
| + | Automatically converted into TeX, above some diagnostics. |
| + | Please remove this comment and the {{TEX|auto}} line below, |
| + | if TeX found to be correct. |
| + | --> |
| | | |
− | The collection of subsets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035016.png" /> is called a system of imprimitivity, while the subsets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035017.png" /> themselves are called domains of imprimitivity of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035018.png" />. A non-imprimitive group of permutations is called primitive.
| + | {{TEX|auto}} |
| + | {{TEX|done}} |
| | | |
− | An example of an imprimitive group is a non-trivial intransitive group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035019.png" /> of permutations of a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035020.png" /> (see [[Transitive group|Transitive group]]): for a system of imprimitivity one can take the collection of all orbits (domains of transitivity, cf. [[Orbit|Orbit]]) of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035021.png" /> on <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035022.png" />. A transitive group of permutations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035023.png" /> of a set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035024.png" /> is primitive if and only if for some element (and hence for all elements) <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035025.png" /> the set of permutations of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035026.png" /> leaving <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035027.png" /> fixed is a maximal subgroup of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035028.png" />.
| + | A group $ G $ |
| + | of one-to-one mappings (permutations, cf. [[Permutation|Permutation]]) of a set $ S $ |
| + | onto itself, for which there exists a partition of $ S $ |
| + | into a union of disjoint subsets $ S _ {1} \dots S _ {m} $, |
| + | $ m \geq 2 $, |
| + | with the following properties: the number of elements in at least one of the sets $ S _ {i} $ |
| + | is greater than $ 1 $; |
| + | for any permutation $ g \in G $ |
| + | and any $ i $, |
| + | $ 1 \leq i \leq m $, |
| + | there exists a $ j $, |
| + | $ 1 \leq j \leq m $, |
| + | such that $ g $ |
| + | maps $ S _ {i} $ |
| + | onto $ S _ {j} $. |
| | | |
− | The notion of an imprimitive group of permutations has an analogue for groups of linear transformations of vector spaces. Namely, a [[Linear representation|linear representation]] <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035029.png" /> of a group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035030.png" /> is called imprimitive if there exists a decomposition of the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035031.png" /> of the representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035032.png" /> into a direct sum of proper subspaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035033.png" /> with the following property: For any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035034.png" /> and any <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035035.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035036.png" />, there exists a <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035037.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035038.png" />, such that | + | The collection of subsets $ S _ {1} \dots S _ {m} $ |
| + | is called a system of imprimitivity, while the subsets $ S _ {i} $ |
| + | themselves are called domains of imprimitivity of the group $ G $. |
| + | A non-imprimitive group of permutations is called primitive. |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035039.png" /></td> </tr></table>
| + | An example of an imprimitive group is a non-trivial intransitive group $ G $ |
| + | of permutations of a set $ S $( |
| + | see [[Transitive group|Transitive group]]): for a system of imprimitivity one can take the collection of all orbits (domains of transitivity, cf. [[Orbit|Orbit]]) of $ G $ |
| + | on $ S $. |
| + | A transitive group of permutations $ G $ |
| + | of a set $ S $ |
| + | is primitive if and only if for some element (and hence for all elements) $ y \in S $ |
| + | the set of permutations of $ G $ |
| + | leaving $ y $ |
| + | fixed is a maximal subgroup of $ G $. |
| | | |
− | The collection of subsets <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035040.png" /> is called a system of imprimitivity of the representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035041.png" />. If <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035042.png" /> does not have a decomposition of the above type, then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035043.png" /> is said to be a primitive representation. An imprimitive representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035044.png" /> is called transitive imprimitive if there exists for any pair of subspaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035045.png" /> and <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035046.png" /> of the system of imprimitivity an element <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035047.png" /> such that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035048.png" />. The group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035049.png" /> of linear transformations of the space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035050.png" /> and the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035051.png" />-module <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035052.png" /> defined by the representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035053.png" /> are also called imprimitive (or primitive) if the representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035054.png" /> is imprimitive (or primitive). | + | The notion of an imprimitive group of permutations has an analogue for groups of linear transformations of vector spaces. Namely, a [[Linear representation|linear representation]] $ \rho $ |
| + | of a group $ G $ |
| + | is called imprimitive if there exists a decomposition of the space $ V $ |
| + | of the representation $ \rho $ |
| + | into a direct sum of proper subspaces $ V _ {1} \dots V _ {m} $ |
| + | with the following property: For any $ g \in G $ |
| + | and any $ i $, |
| + | $ 1 \leq i \leq m $, |
| + | there exists a $ j $, |
| + | $ 1 \leq j \leq m $, |
| + | such that |
| | | |
− | Examples. A representation <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035055.png" /> of the symmetric group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035056.png" /> in the <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035057.png" />-dimensional vector space over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035058.png" /> that rearranges the elements of a basis <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035059.png" /> is transitive imprimitive, the one-dimensional subspaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035060.png" /> form a system of imprimitivity for <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035061.png" />. Another example of a transitive imprimitive representation is the [[Regular representation|regular representation]] of a finite group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035062.png" /> over a field <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035063.png" />; the collection of one-dimensional subspaces <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035064.png" />, where <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035065.png" /> runs through <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035066.png" />, forms a system of imprimitivity. More generally, any [[Monomial representation|monomial representation]] of a finite group is imprimitive. The representation of a cyclic group of order <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035067.png" /> by rotations of the real plane through angles that are multiples of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035068.png" /> is primitive.
| + | $$ |
| + | \rho ( g) ( V _ {i} ) = \ |
| + | V _ {j} . |
| + | $$ |
| | | |
− | The notion of an imprimitive representation is closely related to that of an [[Induced representation|induced representation]]. Namely, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035069.png" /> be an imprimitive finite-dimensional representation of a finite group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035070.png" /> with system of imprimitivity <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035071.png" />. The set <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035072.png" /> is partitioned into a union of orbits with respect to the action of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035073.png" /> determined by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035074.png" />. Let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035075.png" /> be a complete set of representatives of the different orbits of this action, let | + | The collection of subsets $ V _ {1} \dots V _ {m} $ |
| + | is called a system of imprimitivity of the representation $ \rho $. |
| + | If $ V $ |
| + | does not have a decomposition of the above type, then $ \rho $ |
| + | is said to be a primitive representation. An imprimitive representation $ \rho $ |
| + | is called transitive imprimitive if there exists for any pair of subspaces $ V _ {i} $ |
| + | and $ V _ {j} $ |
| + | of the system of imprimitivity an element $ g \in G $ |
| + | such that $ \rho ( g) ( V _ {i} ) = V _ {j} $. |
| + | The group $ \rho ( G) $ |
| + | of linear transformations of the space $ V $ |
| + | and the $ G $- |
| + | module $ V $ |
| + | defined by the representation $ \rho $ |
| + | are also called imprimitive (or primitive) if the representation $ \rho $ |
| + | is imprimitive (or primitive). |
| | | |
− | <table class="eq" style="width:100%;"> <tr><td valign="top" style="width:94%;text-align:center;"><img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035076.png" /></td> </tr></table>
| + | Examples. A representation $ \rho $ |
| + | of the symmetric group $ S _ {n} $ |
| + | in the $ n $- |
| + | dimensional vector space over a field $ k $ |
| + | that rearranges the elements of a basis $ e _ {1} \dots e _ {n} $ |
| + | is transitive imprimitive, the one-dimensional subspaces $ \{ k e _ {1} \dots k e _ {n} \} $ |
| + | form a system of imprimitivity for $ \rho $. |
| + | Another example of a transitive imprimitive representation is the [[Regular representation|regular representation]] of a finite group $ G $ |
| + | over a field $ k $; |
| + | the collection of one-dimensional subspaces $ k g $, |
| + | where $ g $ |
| + | runs through $ G $, |
| + | forms a system of imprimitivity. More generally, any [[Monomial representation|monomial representation]] of a finite group is imprimitive. The representation of a cyclic group of order $ m \geq 3 $ |
| + | by rotations of the real plane through angles that are multiples of $ 2 \pi / m $ |
| + | is primitive. |
| | | |
− | let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035077.png" /> be the representation of the group <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035078.png" /> in <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035079.png" /> defined by the restriction of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035080.png" /> to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035081.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035082.png" /> be the representation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035083.png" /> induced by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035084.png" />. Then <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035085.png" /> is equivalent to the direct sum of the representations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035086.png" />. Conversely, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035087.png" /> be any collection of subgroups of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035088.png" />, let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035089.png" /> be a representation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035090.png" /> in a finite-dimensional vector space <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035091.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035092.png" />, and let <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035093.png" /> be the representation of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035094.png" /> induced by <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035095.png" />. Suppose further that <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035096.png" /> is a system of representatives of left cosets of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035097.png" /> with respect to <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035098.png" />. Then the direct sum of the representations <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i05035099.png" /> is imprimitive, while <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i050350100.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i050350101.png" />, <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i050350102.png" />, is a system of imprimitivity (here <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i050350103.png" /> is canonically identified with a subspace of <img align="absmiddle" border="0" src="https://www.encyclopediaofmath.org/legacyimages/i/i050/i050350/i050350104.png" />). | + | The notion of an imprimitive representation is closely related to that of an [[Induced representation|induced representation]]. Namely, let $ \rho $ |
| + | be an imprimitive finite-dimensional representation of a finite group $ G $ |
| + | with system of imprimitivity $ \{ V _ {1} \dots V _ {n} \} $. |
| + | The set $ \{ V _ {1} \dots V _ {n} \} $ |
| + | is partitioned into a union of orbits with respect to the action of $ G $ |
| + | determined by $ \rho $. |
| + | Let $ \{ V _ {i _ {1} } \dots V _ {i _ {s} } \} $ |
| + | be a complete set of representatives of the different orbits of this action, let |
| + | |
| + | $$ |
| + | H _ {m} = \ |
| + | \{ {g \in G } : {\rho ( g) ( V _ {i _ {m} } ) = V _ {i _ {m} } } \} |
| + | ,\ m = 1 \dots s , |
| + | $$ |
| + | |
| + | let $ \phi _ {m} $ |
| + | be the representation of the group $ H _ {m} $ |
| + | in $ V _ {i _ {m} } $ |
| + | defined by the restriction of $ \rho $ |
| + | to $ H _ {m} $, |
| + | and let $ \rho _ {m} $ |
| + | be the representation of $ G $ |
| + | induced by $ \phi _ {m} $. |
| + | Then $ \rho $ |
| + | is equivalent to the direct sum of the representations $ \rho _ {1} \dots \rho _ {s} $. |
| + | Conversely, let $ H _ {1} \dots H _ {s} $ |
| + | be any collection of subgroups of $ G $, |
| + | let $ \phi _ {m} $ |
| + | be a representation of $ H _ {m} $ |
| + | in a finite-dimensional vector space $ W _ {m} $, |
| + | $ m = 1 \dots s $, |
| + | and let $ \rho _ {m} $ |
| + | be the representation of $ G $ |
| + | induced by $ \phi _ {m} $. |
| + | Suppose further that $ \{ g _ {m,j} \} _ {j=} 1 ^ {r _ {m} } $ |
| + | is a system of representatives of left cosets of $ G $ |
| + | with respect to $ H _ {m} $. |
| + | Then the direct sum of the representations $ \rho _ {1} \dots \rho _ {s} $ |
| + | is imprimitive, while $ \rho ( g _ {m,j} ) ( W _ {m} ) $, |
| + | $ j = 1 \dots r _ {m} $, |
| + | $ m = 1 \dots s $, |
| + | is a system of imprimitivity (here $ W _ {m} $ |
| + | is canonically identified with a subspace of $ V $). |
| | | |
| ====References==== | | ====References==== |
| <table><TR><TD valign="top">[1]</TD> <TD valign="top"> M. Hall, "Group theory" , Macmillan (1959)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> C.W. Curtis, I. Reiner, "Representation theory of finite groups and associative algebras" , Interscience (1962)</TD></TR></table> | | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> M. Hall, "Group theory" , Macmillan (1959)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> C.W. Curtis, I. Reiner, "Representation theory of finite groups and associative algebras" , Interscience (1962)</TD></TR></table> |
− |
| |
− |
| |
| | | |
| ====Comments==== | | ====Comments==== |
| A domain of imprimitivity is also called a block. | | A domain of imprimitivity is also called a block. |
A group $ G $
of one-to-one mappings (permutations, cf. Permutation) of a set $ S $
onto itself, for which there exists a partition of $ S $
into a union of disjoint subsets $ S _ {1} \dots S _ {m} $,
$ m \geq 2 $,
with the following properties: the number of elements in at least one of the sets $ S _ {i} $
is greater than $ 1 $;
for any permutation $ g \in G $
and any $ i $,
$ 1 \leq i \leq m $,
there exists a $ j $,
$ 1 \leq j \leq m $,
such that $ g $
maps $ S _ {i} $
onto $ S _ {j} $.
The collection of subsets $ S _ {1} \dots S _ {m} $
is called a system of imprimitivity, while the subsets $ S _ {i} $
themselves are called domains of imprimitivity of the group $ G $.
A non-imprimitive group of permutations is called primitive.
An example of an imprimitive group is a non-trivial intransitive group $ G $
of permutations of a set $ S $(
see Transitive group): for a system of imprimitivity one can take the collection of all orbits (domains of transitivity, cf. Orbit) of $ G $
on $ S $.
A transitive group of permutations $ G $
of a set $ S $
is primitive if and only if for some element (and hence for all elements) $ y \in S $
the set of permutations of $ G $
leaving $ y $
fixed is a maximal subgroup of $ G $.
The notion of an imprimitive group of permutations has an analogue for groups of linear transformations of vector spaces. Namely, a linear representation $ \rho $
of a group $ G $
is called imprimitive if there exists a decomposition of the space $ V $
of the representation $ \rho $
into a direct sum of proper subspaces $ V _ {1} \dots V _ {m} $
with the following property: For any $ g \in G $
and any $ i $,
$ 1 \leq i \leq m $,
there exists a $ j $,
$ 1 \leq j \leq m $,
such that
$$
\rho ( g) ( V _ {i} ) = \
V _ {j} .
$$
The collection of subsets $ V _ {1} \dots V _ {m} $
is called a system of imprimitivity of the representation $ \rho $.
If $ V $
does not have a decomposition of the above type, then $ \rho $
is said to be a primitive representation. An imprimitive representation $ \rho $
is called transitive imprimitive if there exists for any pair of subspaces $ V _ {i} $
and $ V _ {j} $
of the system of imprimitivity an element $ g \in G $
such that $ \rho ( g) ( V _ {i} ) = V _ {j} $.
The group $ \rho ( G) $
of linear transformations of the space $ V $
and the $ G $-
module $ V $
defined by the representation $ \rho $
are also called imprimitive (or primitive) if the representation $ \rho $
is imprimitive (or primitive).
Examples. A representation $ \rho $
of the symmetric group $ S _ {n} $
in the $ n $-
dimensional vector space over a field $ k $
that rearranges the elements of a basis $ e _ {1} \dots e _ {n} $
is transitive imprimitive, the one-dimensional subspaces $ \{ k e _ {1} \dots k e _ {n} \} $
form a system of imprimitivity for $ \rho $.
Another example of a transitive imprimitive representation is the regular representation of a finite group $ G $
over a field $ k $;
the collection of one-dimensional subspaces $ k g $,
where $ g $
runs through $ G $,
forms a system of imprimitivity. More generally, any monomial representation of a finite group is imprimitive. The representation of a cyclic group of order $ m \geq 3 $
by rotations of the real plane through angles that are multiples of $ 2 \pi / m $
is primitive.
The notion of an imprimitive representation is closely related to that of an induced representation. Namely, let $ \rho $
be an imprimitive finite-dimensional representation of a finite group $ G $
with system of imprimitivity $ \{ V _ {1} \dots V _ {n} \} $.
The set $ \{ V _ {1} \dots V _ {n} \} $
is partitioned into a union of orbits with respect to the action of $ G $
determined by $ \rho $.
Let $ \{ V _ {i _ {1} } \dots V _ {i _ {s} } \} $
be a complete set of representatives of the different orbits of this action, let
$$
H _ {m} = \
\{ {g \in G } : {\rho ( g) ( V _ {i _ {m} } ) = V _ {i _ {m} } } \}
,\ m = 1 \dots s ,
$$
let $ \phi _ {m} $
be the representation of the group $ H _ {m} $
in $ V _ {i _ {m} } $
defined by the restriction of $ \rho $
to $ H _ {m} $,
and let $ \rho _ {m} $
be the representation of $ G $
induced by $ \phi _ {m} $.
Then $ \rho $
is equivalent to the direct sum of the representations $ \rho _ {1} \dots \rho _ {s} $.
Conversely, let $ H _ {1} \dots H _ {s} $
be any collection of subgroups of $ G $,
let $ \phi _ {m} $
be a representation of $ H _ {m} $
in a finite-dimensional vector space $ W _ {m} $,
$ m = 1 \dots s $,
and let $ \rho _ {m} $
be the representation of $ G $
induced by $ \phi _ {m} $.
Suppose further that $ \{ g _ {m,j} \} _ {j=} 1 ^ {r _ {m} } $
is a system of representatives of left cosets of $ G $
with respect to $ H _ {m} $.
Then the direct sum of the representations $ \rho _ {1} \dots \rho _ {s} $
is imprimitive, while $ \rho ( g _ {m,j} ) ( W _ {m} ) $,
$ j = 1 \dots r _ {m} $,
$ m = 1 \dots s $,
is a system of imprimitivity (here $ W _ {m} $
is canonically identified with a subspace of $ V $).
References
[1] | M. Hall, "Group theory" , Macmillan (1959) |
[2] | C.W. Curtis, I. Reiner, "Representation theory of finite groups and associative algebras" , Interscience (1962) |
A domain of imprimitivity is also called a block.