Difference between revisions of "Hotelling test"
(Importing text file) |
Ulf Rehmann (talk | contribs) m (tex encoded by computer) |
||
Line 1: | Line 1: | ||
− | + | <!-- | |
+ | h0480802.png | ||
+ | $#A+1 = 55 n = 0 | ||
+ | $#C+1 = 55 : ~/encyclopedia/old_files/data/H048/H.0408080 Hotelling test, | ||
+ | Automatically converted into TeX, above some diagnostics. | ||
+ | Please remove this comment and the {{TEX|auto}} line below, | ||
+ | if TeX found to be correct. | ||
+ | --> | ||
− | + | {{TEX|auto}} | |
+ | {{TEX|done}} | ||
− | + | '' $ T ^ {2} $- | |
+ | test'' | ||
+ | |||
+ | A test intended for testing a hypothesis $ H _ {0} $ | ||
+ | according to which the true value of the unknown vector $ \mu = ( \mu _ {1} \dots \mu _ {p} ) $ | ||
+ | of mathematical expectation of a non-degenerate $ p $- | ||
+ | dimensional normal law $ N ( \mu , B) $ | ||
+ | whose covariance matrix $ B $ | ||
+ | is also unknown, is the vector $ \mu = ( \mu _ {10} \dots \mu _ {p0} ) $. | ||
+ | Hotelling's test is based on the following result. Let $ X _ {1} \dots X _ {n} $ | ||
+ | be independent $ p $- | ||
+ | dimensional random vectors, $ n - 1 \geq p $, | ||
+ | subject to the non-degenerate normal law $ N ( \mu , B) $, | ||
+ | and let | ||
+ | |||
+ | $$ | ||
+ | T ^ {2} = \ | ||
+ | n ( \overline{X}\; - \mu _ {0} ) ^ {T } | ||
+ | S ^ {-} 1 ( \overline{X}\; - \mu _ {0} ), | ||
+ | $$ | ||
where | where | ||
− | + | $$ | |
+ | \overline{X}\; = { | ||
+ | \frac{1}{n} | ||
+ | } \sum _ {i = 1 } ^ { n } X _ {i} $$ | ||
and | and | ||
− | + | $$ | |
+ | S = | ||
+ | \frac{1}{n - 1 } | ||
+ | |||
+ | \sum _ {i = 1 } ^ { n } | ||
+ | ( X _ {i} - \overline{X}\; ) ( X _ {i} - \overline{X}\; ) ^ {T } | ||
+ | $$ | ||
+ | |||
+ | are maximum-likelihood estimators for the unknown parameters $ \mu $ | ||
+ | and $ B $. | ||
+ | Then the statistic | ||
+ | |||
+ | $$ | ||
+ | F = \ | ||
+ | |||
+ | \frac{n - p }{p ( n - 1) } | ||
+ | |||
+ | T ^ {2} | ||
+ | $$ | ||
+ | |||
+ | has the non-central [[Fisher-F-distribution|Fisher $ F $- | ||
+ | distribution]] with $ p $ | ||
+ | and $ n - p $ | ||
+ | degrees of freedom and non-centrality parameter | ||
+ | |||
+ | $$ | ||
+ | n ( \mu - \mu _ {0} ) ^ {T } B ^ {-} 1 ( \mu - \mu _ {0} ); | ||
+ | $$ | ||
− | + | the statistic $ T ^ {2} $ | |
+ | has the [[Hotelling-T^2-distribution|Hotelling $ T ^ {2} $- | ||
+ | distribution]]. Consequently, to test the hypothesis $ H _ {0} $: | ||
+ | $ \mu = \mu _ {0} $ | ||
+ | against the alternative $ H _ {1} $: | ||
+ | $ \mu \neq \mu _ {0} $ | ||
+ | one can compute the values of the statistic $ F $ | ||
+ | based on realizations of the independent random vectors $ X _ {1} \dots X _ {n} $ | ||
+ | from the non-degenerate $ p $- | ||
+ | dimensional normal law $ N ( \mu , B) $, | ||
+ | which under the hypothesis $ H _ {0} $ | ||
+ | has the central $ F $- | ||
+ | distribution with $ p $ | ||
+ | and $ n - p $ | ||
+ | degrees of freedom. Using Hotelling's test with significance level $ \alpha $, | ||
+ | $ H _ {0} $ | ||
+ | must be rejected if $ F \geq F _ \alpha ( p, n - p) $, | ||
+ | where $ F _ \alpha ( p, n - p) $ | ||
+ | is the $ \alpha $- | ||
+ | quantile of the $ F $- | ||
+ | distribution. The connection between Hotelling's test and the generalized likelihood-ratio test should be mentioned. Let | ||
− | + | $$ | |
+ | L ( \mu , B) = \ | ||
+ | L ( X _ {1} \dots X _ {n} ; \mu , B) = | ||
+ | $$ | ||
− | + | $$ | |
+ | = \ | ||
− | + | \frac{| B ^ {-} 1 | ^ {n/2} }{( 2 \pi ) ^ {np/2} | |
+ | } | ||
+ | \mathop{\rm exp} \left \{ - { | ||
+ | \frac{1}{2} | ||
+ | } \sum _ {i = 1 } ^ { n } ( X _ {i} - \mu ) ^ {T } B ^ {-} 1 ( X _ {i} - \mu ) \right \} | ||
+ | $$ | ||
− | the | + | be the likelihood function computed from the sample $ X _ {1} \dots X _ {n} $. |
+ | The generalized likelihood-ratio test for testing the simple hypothesis $ H _ {0} $: | ||
+ | $ \mu = \mu _ {0} $ | ||
+ | against the compound alternative $ H _ {1} $: | ||
+ | $ \mu \neq \mu _ {0} $ | ||
+ | is constructed from the statistic | ||
− | + | $$ | |
+ | \lambda = \ | ||
+ | \lambda ( X _ {1} \dots X _ {n} ) = \ | ||
− | + | \frac{\sup _ { B } L ( \mu _ {0} , B) }{\sup _ {\mu , B } L ( \mu , B) } | |
+ | . | ||
+ | $$ | ||
− | + | The statistic $ \lambda $ | |
+ | and the statistics $ T ^ {2} $ | ||
+ | and $ F $ | ||
+ | are related by: | ||
− | + | $$ | |
+ | \lambda ^ {2/n} = \ | ||
− | + | \frac{n - 1 }{T ^ {2} + n - 1 } | |
+ | = \ | ||
− | + | \frac{n - p }{pF + n - p } | |
+ | . | ||
+ | $$ | ||
− | For testing the hypothesis | + | For testing the hypothesis $ H _ {0} $: |
+ | $ \mu = \mu _ {0} $, | ||
+ | Hotelling's test is uniformly most powerful among all tests that are invariant under similarity transformations (see [[Most-powerful test|Most-powerful test]]; [[Invariant test|Invariant test]]). | ||
====References==== | ====References==== | ||
<table><TR><TD valign="top">[1]</TD> <TD valign="top"> T.W. Anderson, "An introduction to multivariate statistical analysis" , Wiley (1984)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> C.R. Rao, "Linear statistical inference and its applications" , Wiley (1973)</TD></TR></table> | <table><TR><TD valign="top">[1]</TD> <TD valign="top"> T.W. Anderson, "An introduction to multivariate statistical analysis" , Wiley (1984)</TD></TR><TR><TD valign="top">[2]</TD> <TD valign="top"> C.R. Rao, "Linear statistical inference and its applications" , Wiley (1973)</TD></TR></table> |
Revision as of 22:11, 5 June 2020
$ T ^ {2} $-
test
A test intended for testing a hypothesis $ H _ {0} $ according to which the true value of the unknown vector $ \mu = ( \mu _ {1} \dots \mu _ {p} ) $ of mathematical expectation of a non-degenerate $ p $- dimensional normal law $ N ( \mu , B) $ whose covariance matrix $ B $ is also unknown, is the vector $ \mu = ( \mu _ {10} \dots \mu _ {p0} ) $. Hotelling's test is based on the following result. Let $ X _ {1} \dots X _ {n} $ be independent $ p $- dimensional random vectors, $ n - 1 \geq p $, subject to the non-degenerate normal law $ N ( \mu , B) $, and let
$$ T ^ {2} = \ n ( \overline{X}\; - \mu _ {0} ) ^ {T } S ^ {-} 1 ( \overline{X}\; - \mu _ {0} ), $$
where
$$ \overline{X}\; = { \frac{1}{n} } \sum _ {i = 1 } ^ { n } X _ {i} $$
and
$$ S = \frac{1}{n - 1 } \sum _ {i = 1 } ^ { n } ( X _ {i} - \overline{X}\; ) ( X _ {i} - \overline{X}\; ) ^ {T } $$
are maximum-likelihood estimators for the unknown parameters $ \mu $ and $ B $. Then the statistic
$$ F = \ \frac{n - p }{p ( n - 1) } T ^ {2} $$
has the non-central Fisher $ F $- distribution with $ p $ and $ n - p $ degrees of freedom and non-centrality parameter
$$ n ( \mu - \mu _ {0} ) ^ {T } B ^ {-} 1 ( \mu - \mu _ {0} ); $$
the statistic $ T ^ {2} $ has the Hotelling $ T ^ {2} $- distribution. Consequently, to test the hypothesis $ H _ {0} $: $ \mu = \mu _ {0} $ against the alternative $ H _ {1} $: $ \mu \neq \mu _ {0} $ one can compute the values of the statistic $ F $ based on realizations of the independent random vectors $ X _ {1} \dots X _ {n} $ from the non-degenerate $ p $- dimensional normal law $ N ( \mu , B) $, which under the hypothesis $ H _ {0} $ has the central $ F $- distribution with $ p $ and $ n - p $ degrees of freedom. Using Hotelling's test with significance level $ \alpha $, $ H _ {0} $ must be rejected if $ F \geq F _ \alpha ( p, n - p) $, where $ F _ \alpha ( p, n - p) $ is the $ \alpha $- quantile of the $ F $- distribution. The connection between Hotelling's test and the generalized likelihood-ratio test should be mentioned. Let
$$ L ( \mu , B) = \ L ( X _ {1} \dots X _ {n} ; \mu , B) = $$
$$ = \ \frac{| B ^ {-} 1 | ^ {n/2} }{( 2 \pi ) ^ {np/2} } \mathop{\rm exp} \left \{ - { \frac{1}{2} } \sum _ {i = 1 } ^ { n } ( X _ {i} - \mu ) ^ {T } B ^ {-} 1 ( X _ {i} - \mu ) \right \} $$
be the likelihood function computed from the sample $ X _ {1} \dots X _ {n} $. The generalized likelihood-ratio test for testing the simple hypothesis $ H _ {0} $: $ \mu = \mu _ {0} $ against the compound alternative $ H _ {1} $: $ \mu \neq \mu _ {0} $ is constructed from the statistic
$$ \lambda = \ \lambda ( X _ {1} \dots X _ {n} ) = \ \frac{\sup _ { B } L ( \mu _ {0} , B) }{\sup _ {\mu , B } L ( \mu , B) } . $$
The statistic $ \lambda $ and the statistics $ T ^ {2} $ and $ F $ are related by:
$$ \lambda ^ {2/n} = \ \frac{n - 1 }{T ^ {2} + n - 1 } = \ \frac{n - p }{pF + n - p } . $$
For testing the hypothesis $ H _ {0} $: $ \mu = \mu _ {0} $, Hotelling's test is uniformly most powerful among all tests that are invariant under similarity transformations (see Most-powerful test; Invariant test).
References
[1] | T.W. Anderson, "An introduction to multivariate statistical analysis" , Wiley (1984) |
[2] | C.R. Rao, "Linear statistical inference and its applications" , Wiley (1973) |
Hotelling test. Encyclopedia of Mathematics. URL: http://encyclopediaofmath.org/index.php?title=Hotelling_test&oldid=19014